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Chapter 0. Basic Analysis

Materials : Download data-sets and manual

Albatross Analy talmport  DataManagement Random Effect Mod Multiple Respon:

Download Dataset & Manual
e

Manual PDF Link

http://cheoling.snu.ac kr:3838/Manual/Manual pdf
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Chapter 1. Regression

Linear Regression Model

Components of Linear Regression
@ the response Y
@ the linear predictor : u = E(Y) = X
@ the distribution of y : Gaussian Distribution

@ Variance : Var(Y) = ¢/

Gaussian Distribution

o Log-likelihood

_ 2
log L(u, ¢;y) = —% - % log (27¢)
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Linear Regression Model

Normal Equation

o (XTWX)B = XT Wy where W =
— (X"X)B=xXTy

1
El

o B=(X"X)"'XTy, Var (B) = (X"WX)™' = ¢(X"X)"!

Hat matrix H = X(X"X)7'x"

Leverage g; : i-th diagonal elements of H

N

Residual é,' =Yi— X,'ﬁ

Studentized residual :

(Eh

Vol —aq)
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ex. Carstopping - carstopping.txt

@ The data give the speed of cars and the distances taken to stop. Note that the data
were recorded in the 1920s (Ezekiel,M.,1930).

StopDist : stopping distance (ft)
Speed : speed of car (mph)

Model 1 : StopDist = o + 3 Speed
Model 2 : StopDist = o + (8 Speed?

Stopbist
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ex. Carstopping - Model Checking Plot

Studentized Residual

Sample Quantiles

Residuals vs Fitted

|Residuals| vs Fitted

|Studentized Residual

scaled fitted values

Normal Probability Plot

Frequency

scaled fitted values

Histogram of Student Residual

Theoretical Quanties

StudentResidual
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ex. Ozone - Ozone_original.csv

@ Ozone data measured for 330 days in 1976. All measurements are in the area of
Upland, CA, east of Los Angeles (Breiman and Friedman, 1985).
TempSandburg : Sandburg Air Force Base temperature (°C)
InvHeight : inversion base height (ft)
DaggettPressure : Daggett pressure gradient (mmhg)
PresHeight : Vandenburg 500 millibar height (m)
Visibility : visibility (miles)
Humidity : humidity (%)
Wind : wind speed (mph)
Day : day of the year

Ozone : upland ozone concentration (ppm)

Model : Ozone = o + 1 TempSandburg + 3> InvHeight +
3 DaggettPressure + (34 PresHeight
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ex. Ozone - Model Checking Plot

Studentized Residual

Sample Quantiles

Residuals vs Fitted

|Residuals| vs Fitted
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Studorifosdual
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ex. UC Berkeley Admission - UCBAdmission2.csv

o Aggregate data on 4,526 applicants to graduate school at Berkeley for the six largest
departments in 1973 classified by admission and sex (Bickel et al., 1975).

Gender : Male, Female
Department : A, B, C,D, E, F
Admit : 1(Admit), O(Reject)

Model 1 : Admit = 8o + B1 Gender
Model 2 : Admit = By + B1 Gender + B> Department

Depart

Total Admission Probabilty
—

Gender
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Chapter 2. GLMs

Five components of GLM
@ the response Y
@ the linear predictor n = Xp
@ the distribution of y (exponential dispersion family)
o the link function g(u) = n with u = E(Y)
@ a prior weight 1/¢
Likelihood Principle(Birnbaum, 1962)

@ The classical likelihood function contains all the information in the observed data
about the fixed parameter, provided that the assumed stochastic model is right.
Thus, if the model is correct, likelihood captures all the information in the data for
analysis.

o Model checking is possible.
@ All necessary inferential tools can be derived from the likelihood.

@ In GLMs, the likelihood inference can proceed via IWLS equations. Also, the least
square methods in regression becomes the ML procedure in GLMs.
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Exponential Dispersion Family

@ Log-likelihood

07y — b(6

lOgL(05¢1y) = yT() + C(y’¢)
@ b(#) is cumulant generating function.
@ Mean : u=E(Y) = b'(0)
@ Variance : Var(Y) = ¢b"(6)
Distribution E(Y) 0 o) V(w) Var(Y) b(9)
N(u, o?) I I a? 1 o? 6?/2
Poi (1) Iz log 11 1 jz ju exp(0)
Bin(n, p) p=np log t 1 M M nlog(1 4 exp(0))
Gamma(a,f) p=9% —1/u =1 w2 op? = & —log(—9)
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IWLS for likelihood inference

1. Specify a starting value for 3, say 5 (k = 0)

2. Compute adjusted linear predictor
n(k+1) _ Xﬁ(k) and N(kﬂ) _ gfl(n(kﬁ»l))

3. Compute adjusted dependent variable

(k+1)

_ (k1) Oy ( (k+1)>
Si=n; =+ Yi —
aM’('k-¢—1)

4. Fit the weighted linear regression s = X + € with € ~ (0, W(k+1)) where

e . 8n’(k+1) 2
w = dlag W Var( \/1) .

5. Solve (X7 W(kH)X)B — XTwktg
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IWLS for likelihood inference

6. Put estimated coefficient as
ﬂ(k+1) _ (XT W(k+1)X)71XTW(k+1)S

7. Repeat step 2~6 for k = 0,1,2,--- until convergence.
8. After convergence, report 3 and Var(B\) = (XTWX)~! where

W = diag ((gZ:) Var(Y;)) .

— IWLS is the extension of least squares method to GLMs!

Homework : You may derive IWLS from the likelihood.
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Residual
o Unscaled deviance : D = 2¢(¢(y;y) — l(p; y)) =D d;

@ Unscaled deviance components : d;

Distribution  Deviance component d;

Normal (yi — mi)?

Poisson 2[y; log(yi/mi) — (vi — k)]

Binomial 2 [y,— log(y:/1ti) — (m; — yi) log '""_ﬁ}
mi—p;

Gamma 2[— log(yi/mi) + (vi — i)/ 1ui]

o Standardized deviance residuals : rp; = sign(y; — ;) \/di/
@ Pearson residuals : rp; = (yi — i) / v/ ¢V (1)

e D* =>"r}; is the log likelihood ratio statistic.

o Pr=3%" rﬁﬂ- is the Pearson chi-squared statistic.
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Hat Values

@ GLMs have the hat matrix
H=X(X"WX) 'X"W

where W = diag ((2—2’;_)2Var(Y,-)>.
@ The diagonal elements of H are the hat values here denoted by g;.
@ Studentized residuals adjust for the hat values and are obtained as
ri

\/1—q,'.

@ We can use the unscaled deviance to estimate the dispersion parameter

-~ > di D

C=S1-a) s
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ex. Crack growth - crackgrowth(page72).csv

o Crack-growth data from experiment where crack length in inches are measured on a
compact tension steel test (CT test) operated in different laboratories (Hudak et al.,
1978).

y : increment of crack length (inch)
crack0 : initial value of crack length (inch)
cycle : number of cumulative loading cycles (10° cycle)

specimen : 21 metallic specimens

Model : n = logu = o+ 8 crackO

ccccc
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ex. Crackgrowth - Model Checking Plot

Residuals vs Fitted |Residuals| vs Fitted
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ex. Train - train(pagel03).csv

@ Train-related accidents data in the UK between 1975 and 2003 (Agresti, 2007).
X : number of years since 1975
y : number of accidents between trains and road vehicles

t : distance of train travel (million kilometer)

logt : logarithm of t

Model : n = log(u) = log(t) + a + Bx

19/282



ex. Train - Model Checking Plot

Studentized Residual

Sample Quantiles

Residuals vs Fitted

|Residuals| vs Fitted

2
] o . H
H
a0 35 40 45 50 55 0 &5 a0 35 40 45 50 85 0 s
caled fited vaes saled ftec values
Normal Probability Plot Histogram of Student Residual
s
Z
)
2 4 o i 3 2 ; 0 1 2 3 .
Theoretcal Quaniies Studorifosdual

20/282



ex. Crabs - Crabs.csv

o Data from a study of nesting horseshoe crabs, which investigated factors that affect
whether the female crab had any other males, called satellites, residing near her
(Jane Brockmann, 1996).

sat : number of satellites

y : indicator of whether a female crab has any satellites
weight : weight (kg)

width : shell width (cm)

color : 1(medium light), 2(medium), 3(medium dark), 4(dark)
spine : 1(both good), 2(one broken), 3(both broken)

When p=Prob(Y=1),
Model : 1 = log ({£;) = a+ 3 width
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ex. Crabs - Model Checking Plot

Residuals vs Fitted |Residuals| vs Fitted
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ex. Snoring - snoring.csv

o Data based on an epidemiological survey to investigate snoring as a possible risk
factor for heart disease (P.G. Norton and E.V. Dunn, 1985).

yes : number of people who have heart disease
no : number of people who don't have heart disease

x : snoring level. O(Never), 2(Occasional), 4(Nearly every night), 5(Every night)
n :yes + no

When p=Prob(Y=1),
Model : n = probit(p) = ®~!(p) = a + Bx

Probability

2 3 4
Snoring

@
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ex. Snoring - Model Checking Plot

Residuals vs Fitted |Residuals| vs Fitted
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ex. Tennis - Tennis.csv

o Results of matches among five professional tennis players between January 2014 and
January 2018 (Agresti, 2019).

@ The fitted model provides a ranking of the players.

@ It also estimates the probabilities of win and of loss for matches between each pair
of players.

[1; : probability that player i is the victor when i and j play

Mj =1 —T; (ties cannot occur)

Model : log <%U,) = log (1117;/_'”) =B — B

Loser
Winner Djokovic  Federer Murray Nadal Wawrinka
Djokovic - 9 14 9 4
Federer 6 - 5 5 7
Murray 3 0 - 2 2
Nadal 2 1 4 - 4
Wawrinka 3 2 2 3 -
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ex. Tennis - Model Checking Plot

Residuals vs Fitted |Residuals| vs Fitted
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Chapter 3. H-likelihood

Introduction

@ The h-likelihood method can fit rather complex models in an elegant manner.

@ In contrast, classical likelihood software may not be as flexible, whereas Bayesian
MCMC approaches allow fitting these models but at the expense of more

computation time and requires to assume priors for fixed parameters.

@ In this chapter we define the h-likelihood and provide insight to inference and
predictions based on the h-likelihood. We introduce the extended likelihood principle
underlying the h-likelihood framework and show how it is related both to classical

likelihood and Bayesian inference.
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Introduction

Five important points are made:

@ Inference about random effects can be made using the h-likelihood, whilst classical
likelihood cannot give any information about the random effects,

@ H-likelihood inference of random effects takes into account the uncertainty in
estimating the fixed effects, whereas empirical Bayes (EB) estimation of random

effects assumes known values of the fixed effects,
@ Model checking is possible for all parts of the model,
o All necessary inferential tools can be derived from the h-likelihood, and

@ The h-likelihood can be used for predictions of unobserved random variables such as

future outcomes.
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Example for prediction of future outcome

@ Suppose that we have the number of epileptic seizures in an individual for five
weeks, y = (3,2,5,0,4).
@ Suppose also that these counts are i.i.d. from a Poisson distribution with mean 6.

o Here, = (3+2+5+ 0+4)/5 = 2.8 is the maximum likelihood estimator of 6,
which maximizing the Fisher likelihood fy(y). The inferences about 6 can be made
by using the likelihood.

@ Now we want to have a predictive probability function for the seizure counts for the

next week v.

@ Then, because fy(v = ily) = fo(v = i), the plug-in technique gives the predictive
distribution for the seizure count v of the next week:

fa(v =ily) = fy(v = i) = exp(—2.8)2.8'/i!
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Example for prediction of future outcome

@ Pearson (1920) pointed out the limitation of this Fisher likelihood using the plug-in
method because it cannot account for uncertainty in estimating 6.

@ This plug-in technique is a kind of empirical Bayes method. With Jeffreys' prior,
7(0) « 07Y/2(1 — 0)~Y/2, the resulting marginal posterior

p(vly) = / fo(vly)m(6)d6

gives a predictive probability with higher probabilities for larger y. This Bayesian
procedure handles uncertainty caused by estimating 6.

@ However, it depends upon the choice of a prior and it might be difficult to justify
why the choice of Jeffreys’ prior is the right choice.
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Example for prediction of future outcome

@ Here the h-likelihood including v is proportional to

Now, O(v) = (342 +5+40+4+ v)/6 is the potential ML estimate if v is observed.

@ Then, the normalized profile likelihood fé(v)(3727570747 v) gives the predictive

probability p(v|y), almost identical to Pearson’s but without assuming a prior on 6.

This is a method to eliminate 0 from the predictive probability fo(v|y).

@ This example shows that standard methods for likelihood inferences can be used for

the prediction problem by using the h-likelihood without assuming a prior on 6.
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Example for prediction of future outcome

A
N
g 4 @
g
0
e
z
2
z
E
g 2|
o

Figure 3.3 Predictive density of the number of seizure counts:. Plug-in method
(A), Bayesian method (o) and h-likelihood method(+ ).
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Likelihood Inference for Random Effects

o We consider extended statistical models that consist of three types of objects, data
y, parameter (fixed unknowns) 6 and unobservables (random unknowns) v. Then
statistical inferences need to be made for both unknowns 6 and v, based upon the
observed data y.

o Consider a linear mixed model for i =1,--- ;mand j=1,--- n;
Yip =X} + vi + ey, (1)

where 3 is the vector of fixed effects and vi~ N(0,\) are i.i.d. random effects,

ej ~ N(0,¢) is an i.i.d. random error.

@ In this model, there are two types of unknowns; fixed unknowns 6 = (3,4, A) and

random unknowns v = (vi,- -+, vm)'.
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Likelihood Inference for Random Effects

@ The linear mixed model (1) may be written in matrix form as
y=XB+Zv+e. (2)

@ In the classical likelihood setting the model for the data generation process fy(y) is

given by the density function of a multivariate normal distribution
N(XB,A\ZZ" + ¢I)
with the corresponding marginal likelihood
L8N by) = @rlV]) dep(- 20 - XB) VI - XB)), ()

where V = ZZ" )\ + 1.

o This marginal likelihood can be used to estimate and make inference about the fixed
parameters 3, A and ¢. However, the random effect v is not included so that the
classical likelihood does not directly give inference about the random effects.
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Likelihood Inference for Random Effects

@ Lee and Nelder (1996) proposed the use of the hierarchical likelihood

H(8,v;y) = fo(y[v)fa(v) = fo(v, y), (4)

where fy(v, y) is the joint density of v and y.

@ It is related to the conditional distribution of v given y as
H(6,v;y) = fo(v,y) = fo(y)fo(vly). (5)

@ Bjgrnstad introduced the extended likelihood principle where all information in the
observed data for parameters 8 and unobservables v are in the extended likelihood,
such as the hierarchical likelihood.

@ Lee and Nelder (1996) found that the scale of v is important for meaningful
statistical inference; they called the extended likelihood in a particular scale the
hierarchical likelihood and its logarithm is referred to as the h-likelihood.
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Likelihood Inference for Random Effects

@ For the h-likelihood, there is a close connection both to classical frequentist
inference and Bayesian inference.

o In the absence of random effects, the hierarchical likelihood is the same as the classical
likelihood, i.e. H = fy(y).
o In the absence of fixed parameters 6,

H(viy) = f(y)f(vly)- (6)

which is proportional to the posterior f(v|y) used for inference in Bayesian statistics
where f(v) is a prior.

@ However, in hierarchical models such as linear mixed models, v is random and f(v)
is part of the model. To make this distinction clear, we call f(v|y) the predictive

density (or predictive probability) for random effect v.

@ In this book, the conditional likelihood fy(v|y) is called the predictive probability to
highlight its probability property

/fg(v|y)dv =1

36/ 282



Likelihood Inference for Random Effects

@ Lee and Nelder (1996) proposed that the random effects could be estimated by
finding the mode of the joint density fy(y, v).

@ Using the mode of H can simplifies the computations drastically compared to
MCMC. However, it requires an appropriate scale of v because the joint density will
depend upon the transformation of v.

@ For example, the mode of the joint likelihood is not invariant to transformation of v
and different conclusions will be drawn depending on the scale of v chosen when the
mode is used for inference about the random effects.

@ The novelty of Lee and Nelder's method (1996) is to limit the possible joint

likelihoods to a given scale of v, resolving the invariance problem.
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Likelihood Inference for Random Effects

@ For inference about fixed parameters, we use the marginal likelihood derived from
fo(y, v) by integrating out the random effects

fily) = / foly. v)dv. @)

This is a classical Fisher likelihood, so we can obtain the ML estimator for 6 by
maximizing fy(y).

@ For estimating variance components, Patterson and Thompson (1971) suggested a
REML approach to improve the estimation properties with reduced bias. REML for
linear models can be extended to GLMs through a more general specification as a

conditional likelihood fg(y|B) where f3 is the estimator for the mean parameters.
(Smyth and Verbyla, 1996; Lee and Nelder 2001).
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Likelihood Inference for Random Effects : Linear mixed models

@ Recall the linear mixed model,

y=XB+Zv+e

with v ~ N(0, Al) and e ~ N(O, ¢I).

@ The marginal likelihood is given by
1 1
log(fy(y)) = log / H(0, viy)dv = = log(det(2rV)) — S (y = XB)T V™ }(y — XB)

where V.= ZZT\ + 1.

@ From the marginal likelihood, we can obtain the ML estimator
B=(XTVviX)“IXTvly.

o REML estimator equations for variance components is obtained from

l08(fo(417)) = — 5 log(det(2nV)) — S(y = XB)TV "1y - XB)

1
~5 log(det(XT V~1X))
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: Linear mixed models

Likelihood Inference for Random Effects :

@ The h-likelihood given by

log(faly. v)) = log(fa(y|v)) + log(fs (1))
~— Jlog(2r0) — 5u(y = XB— 2v)(y ~ XB - 2v)

2

VTV

- = Iog(27r)\) N

where n is the number of observations and m is the length of v

@ The joint maximization for B and v gives Henderson's mixed model equation

1X7X X'z B\ _ [ Xy
127X 1zZ7z 413 v) \ 3Z7y )’

which gives the BLUP for v and the ML estimator for 3.
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Deriving Sample Variance from the REML Likelihood

@ Suppose yi1, y2, ..., yn are i.i.d. observation from N(,u,a2) where both parameters are
unknown.

o The ML estimator for y is the sample mean i = £ >~" | y; ~ N(u,0°/n), whereas

n

. L. . . . A2 1 =12
direct maximization of logL gives the biased estimator 6% = 2 > (y; — y)*.

@ So we consider the REML likelihood

fyla) = fly) (ﬁ) exp(—52z > (vi — 1)?)
=27 = . 2
f(i2) \/271_202/") EXP(—Q(U%/H) (% Zi:l Vi — N) )

(o) (23’ KZ(””)2> - (Z”"’J D
1

41 /282



Deriving Sample Variance from the REML Likelihood

@ lIgnoring constant terms, the REML log-likelihood becomes

n—1 1 |w _
logLrem = — 5 log(o?) — 252 [ E (vi — Y)zl
=1

o By maximizing logLrem., we obtain the REML estimator 6° = -2 > (y; — y)*.

@ Hence we can see that the REML estimator adjusts for the degrees of freedom.

@ The two estimators will be similar for large n, however, when the number of mean
parameters (i.e. the number of parameters included in the mean part of the model)

grows with sample size, the two estimators can be very different.
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Extended Likelihood Principle

@ Birnbaum (1962) proved that the classical likelihood function contains all the
information in the observed data about the fixed parameter.

@ Bjgrnstad (1996) extended this concept and showed that all the information in the
data y for parameters 6 and unobservables v is in the extended likelihood.

@ This means that inference about fixed parameters and unobservables, using the
information only in the data, requires the extended likelihood function and nothing
else. However, these likelihood principles do not show how the information in the

data can be retrieved from the likelihood.
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Extended Likelihood Principle

@ In the absence of v, the extended likelihood becomes the marginal likelihood. Fisher
advocated the use of ML estimation and established the underlying theory.

@ In the absence of 0, we see that the extended likelihood gives Bayesian posterior and
its use has been advocated by Bayesian statisticians.

@ This gives an insight on how to make inferences in at least these two extreme cases,
so that we may develop a procedure which gives identical inferences to that using
the marginal likelihood for 6 and that exploiting the property of the predictive
probability (posterior) for v in these two extreme cases.

@ In the context of HGLMs, Lee and Nelder (1996,2005) advocated the use of the
h-likelihood and presented how information in the data for unobservables and
parameters can be retrieved from it under the extended likelihood framework for all

three types of objects (6, v and y).
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Extended Likelihood Principle

o Similarly as for classical likelihood inference, we have a model for the data
generation process and a corresponding likelihood.
@ Stochastic Model:

o Generate an instance of the random quantities v from a probability function fy(v).
o With v fixed, generate an instance of the data y from a probability function fp(y|v).
o The combined stochastic model is given by the product of fy(v)fy(y|v).

o Statistical Inference:

o Given y, we make inferences about 6 by using the marginal likelihood L(6;y) = fy(y).
o Given 0, we make inferences about v by using the conditional likelihood

L(0,vivly) = fo(vly). (8)
o The extended likelihood for unknowns (v, 6) is given by
L(0,viv,y) = L(0;y)L(0, v; vly), 9)

where

L(07 v; Vry) = f9(vry)7
L(0;y)L(0, v vly) = fo(y)fo(vly).
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Extended Likelihood Principle

The connection between these two processes is given by
fo(y)fo(vly) = L(0, v v,y) = fo(v,y) = fo(v)fo(y|v). (10)

In the extended likelihood framework, v appears in stochastic model as random

instances, but it appears in statistical inference as unknowns.

From (9), we see that the extended likelihood is the product of two likelihoods, the
Fisher likelihood f3(y) and the conditional likelihood f5(v|y).

In likelihood theory the product of two likelihoods is a way of gathering information
from the two independent source of data (Chapter 1).

This is straightforward to note the close connection between the Fisher likelihood

and the h-likelihood, because it uses the Fisher likelihood for inferences about 6.
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Definition of the h-likelihood

@ For continuous v, Lee and Nelder (1996) proposed the use of the hierarchical

likelihood, an extended likelihood limited to a pre-defined scale of v.

@ Suppose we have two models for the random effects in a linear predictor as
m=XB+v and m = X8+ exp(v).

@ Then we have two alternative extended likelihoods based on two different scales of

random effects:
Li(0,v;y,v) = fa(ylm)fa(v) and La(0,v;y,v) = fo(ylm)fo(v).  (11)

@ The modes of these two likelihoods differ and the question is which scale of random
effects to use for statistical inferences.
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Definition of the h-likelihood

@ We define the strong canonical scale of v such that the random effects v carry no
information about the fixed effects 0 as

exp{{(61, ¥(01);y, v)} _ for(y)
exp{l(62, V(62); y,v)}  fa,(y)

where 6; and 6, are two sets of 6 values and ¥(61) and ¥(62) are the modes of
£(01,v;y,v) and (62, v; y, v), respectively. (Lee, Nelder and Pawitan, 2017).

@ The h-likelihood is defined as the extended likelihood having v on a canonical scale.
This means that the marginal likelihood gives the same mode estimators about fixed
effects as the h-likelihood, so that there is no conflict between classical likelihood

inference and h-likelihood inference.

@ For example, in linear mixed models, v is on a canonical scale to 8 which implies
that joint maximization of h with respect to 3 and v gives the MLE for 8.

@ In HGLMs, the h-likelihood is defined under a weak canonical scale where the

random effects combine additively with the fixed effects in a linear predictor.
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Definition of the h-likelihood

@ From the linear predictor 11 above, we see that L1(6, v]y, v) is the h-likelihood,
which gives a consistent inference framework (Lee, Nelder and Pawitan, 2017)

o The likelihood Li(0, v;y, v) = fo(y|m)fo(v) is called a hierarchical likelihood, as the
random effects enter linearly in the linear predictor.

@ An important difference between transforming fixed versus random effects is that a
transformation of random effects requires the need to multiply the density function
for the random effects with a Jacobian.

@ In that sense, when v is discrete, there is no Jacobian involved so that all extended
likelihoods are the h-likelihood (Lee and Bjgrnstad, 2013).
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Laplace approximation for the integrals

@ For the linear mixed model both the marginal likelihood and REML likelihood are
straight forward to derive, but for most other distributions the integral for the

marginal likelihood has no analytical form.

@ Numerical integration is infeasible if the number of integrands is large and MCMC
algorithms are often too slow. As an alternative, we use Laplace approximation in

h-likelihood approach.

o The (Ist-order) Laplace approximation for some integral [ exp[f(x)]dx is

/ exp[f(x)]dx ~ {'_;raafx(zx) zexp[f(x)]}

where xp is a global maximum of f(x).

X=X0
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Laplace approximation for the integrals

o For the marginal likelihood, the Laplace approximation around the fitted random

effects is

1
2

f9(y> V)

_ 9% log(fy(y,v))

/fo(% V)dV=/exp(log(f9(y, v)))dv ~ ‘2{;

where ¥ is obtained from the mode of f(y, v).

o Applying a Laplace approximation to eliminate random effects together with a
quadratic approximation around 3 on the REML likelihood fg(y\fi‘) to eliminate fixed

1
2
fg(y7 V)}
8°h 32h

where I(B,v) = — ﬁ aggv with h = log(f(y, v)).
ovop a2

effects, we get

B=pB,v=v

fyIB) ~ .. ~ {"(Z)
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Adjusted profile h-likelihood

o To this end, Laplace approximation for the log-marginal likelihood is specified as an
adjusted profile h-likelihood (APHL)

pv(h) = [h— %log(ll(V)l/%)]lv:o (12)

where I(v) is the information matrix for the random effects, and ¥ is the maximum

h-likelihood estimator of the random effects using h as objective function.

@ The approximation for the log-REML likelihood log f(y|3) can also be expressed as
an APHL:

1
ps.v(h) = [h — Slog(|/(B, v)|/2m)]l 54— (13)
where I(3, v) is the information matrix for the fixed and random effects.

@ The estimates of fixed effects and dispersion parameters are computed by

maximizing these two likelihoods.
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Street magician

Here an example is presented to illustrate the fundamental idea of likelihood inference
and how it may differ from Bayesian inference.

@ A street magician has a small bag with a number of dice. There are two types of
dice in the bag; white and blue. The white are numbered 1 to 6, while the blue have
three sides with 1 and three sides with 2.

@ The magician draws a dice at random from the bag without showing it to you and
rolls the dice, then he claims that the number is 2.
e (a) Which type of dice would you guess he has rolled, a white or a blue?
o (b) The magician lets you bet on the color of the dice. Which odds would you accept?
o (c) Now the magician informed that there are 20 white dices and 10 blue dices in the
bag. What is your guess on the color of dice, which he rolled?
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Street magician

Solution of (a).

@ The likelihood for a white dice is 1/6 and for a blue dice is 1/2. Therefore, as a
likelihoodist, the maximum likelihood guess is that the dice is blue.

@ Let Y be the number of dice and let C be a colour of dice and ¢ be a realized value
of the colour of dice. Then, the likelihood ratio is

P(Y =2|C =blue) _1/2
P(Y =2[C = white)  1/6

3.
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Street magician

Solution of (b).

@ To be able to make a probability statement we need to know the distribution of the
two types of dice in the bag. This is unknown however, which means that for a
likelihoodist the odds cannot be computed.

o A Bayesian would guess the distribution and thereby compute the odds

P(Y = 2|C = blue)w(C = blue) 7(C = blue)  P(C = blue|Y = 2)

P(Y = 2|C = white)r(C = white) = ~n(C = white) = P(C = white]Y =2)’

Controversy is how to determine 7(C = blue) and 7(C = white).
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Street magician

Solution of (c).

@ The problem can be solved using a probabilistic argument, but here we also show
that both a classical likelihood ratio and the ratio of extended likelihoods can be
used to draw the same conclusion.

@ Let ¢ be a realized value of the colour of dice such that
L(c = blue) = P(C = blue) =1/3 and L(c = white) = P(C = white) = 2/3.

Then, the ratio of extended likelihood is

L(c = blue, Y = 2) P(Y = 2|c = blue)L(c = blue)

L(c = white, Y =2) ~ P(Y = 2|c = white)L(c = white)
_1/2x1/3 3

T1/6x2/3 2

Thus, the maximum extended likelihood guess is that the dice is blue.
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Street magician

@ Furthermore, we can compute the conditional likelihood

(¢ = blue, Y =2)
L(Y =2)
P(Y = 2|c = blue)L(c = blue)
= P(Y = 2|c = blue)L(c = blue) + P(Y = 2|c = white)L(c = white)
P(Y = 2|c = blue)
~ P(Y =2|c = blue) + P(Y = 2|c = white)L(c = white)/L(c = blue)
1/2x1/3 3

T1/2x1/3+1/6x2/3 5

L(c = bluely =2) = L

and

L(c = white|Y = 2) = %

o We call L(c = white|Y = 2) the predictive probability.
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Street magician

@ Note that the conditional likelihood L(c = blue|Y = 2) depends upon the likelihood
ratio L(c = white)/L(c = blue), so that it is invariant with respect to the

transformation of data and parametrization.
o Furthermore,

L(c = blue, Y = 2) L(c =bluelY =2) 3

[(c = white, Y =2) _ L(c = white] Y =2) 2’

i.e. the mode of the conditional likelihood L(c|Y = 2) is the same as the mode of
the extended likelihood L(c, Y = 2).

@ In (c) we have an information on P(C) (part of the model), while in (b) no
information is available on P(C), so that we need a guess 7(C).
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H-likelihood and empirical Bayes

@ Inference on random effects have important practical use in predictions. A typical
example is for instance if there are repeated observations on patients’ hospital visits
and the life time of these patients are to be predicted. This would require a survival
analysis including random effects for patients and the uncertainty in the predictions
will include the uncertainty of the fitted random effects.

@ When 6 is known, we can make inferences about v using fp(v|y). However, 6 is
unknown, so that we may make inferences using f;(v|y) with 0 being the ML
estimator. This is the so-called EB approach, which gives consistent estimation for

predictive probability because 0 is consistent.
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H-likelihood and empirical Bayes

@ However, in finite samples this approach often has a poor inferential performance
because it cannot account for uncertainty, caused by estimating 0; especially when
the number of observations is low and the number of parameters in 0 is large.

@ Such an uncertainty about 8 is included in fo(y), and can be used for inference on
random effects (Lee and Nelder, 1996, 2001).

@ Thus, an important question is how to eliminate the nuisance parameter 8 from the
predictive probability fy(v|y), using the information on 6 in the likelihood f(y).

@ Next slide illustrates the difference using a linear mixed model as an example.
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H-likelihood and empirical Bayes

@ For a linear mixed model
y=XB+Zv+e

v~ N(0, )
e ~ N(0, ¢l
the h-likelihood is

log(f3(y, v)) =log(fa(y|v)) + log(fs(v))
—— Jlog(2r0) — 5 (v~ X8~ 2v) (y ~ XB — 2v)

- = Iog(27r)\) N

where n is the number of observations and m is the length of v.
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H-likelihood and empirical Bayes

@ In a linear mixed model, estimates of both 8 and v can be computed by maximizing
the h-likelihood.

@ The score equations 2% = 0 and @ = 0 give Henderson's mixed model equations:

o8

1yT 1yT 1yT
(?XTX 1¢TX21><ﬂ)_<?XTy>
$ZX EZZ'HX v EZy

and the information matrix (computed from the second derivatives) is
< IX'x  IxTz )
17T 17T 1 ’
¢Z X ¢Z Z+15

@ The above equation is fitting algorithm of regression model

(5)-(2 1)(2)(2)

where e; ~ N(0, ¢l) and e2 ~ N(0, ). This is called data augmentation method.
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H-likelihood and empirical Bayes

@ This is different from an EB approach f;(v|y) where the information matrix

1.7 1
(d)z z+|/\>

would typically be used for inference on the random effects ignoring the uncertainty
in the estimates of f‘)’

@ A more thorough exposition is found in Section 5.4 of Lee, Nelder and Pawitan
(2017) showing that the h-likelihood gives correct inference.

63 /282



Prediction of random effects

@ Because the Fisher likelihood fy(y) does not involve v, the other component, the
predictive probability, fo(v|y) carries all the information in the data about the

unobservables.

@ Thus, the prediction of random effects can be made via the EB method using the

estimated predictive probability (or posterior)
p(vly) = fo(vly) = =(vly,0),

where 0 is the usual ML estimator (Carlin and Louis, 2000).

@ However, using f3(v]y) to make inferences about v is naive and Bjgrnstad (1990)

has shown how badly it performs in measuring the true uncertainty in estimating v.
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Prediction of random effects

@ Note that maximization of the h-likelihood

h =log fo(y|v) + log fy(v) = log fo(v|y) + log fo(y)

yields EB-mode estimators for v, without computing fy(v|y) = fo(y, v)/fa(y).

@ However, the Hessian matrix (i.e. matrix of second derivatives) based upon fy(vl|y)
gives a naive variance estimate for the prediction ¥ because it does not properly
account for the uncertainty caused by estimating 6, that is in fy(y).

@ The h-likelihood considers both components and give proper estimators for random
effects and their variance estimators. However, the estimation of the first two

moments are not enough for accurate inferences of random effects if it is not normal.
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Prediction of random effects

@ The previous example shows that ¥ is neither a consistent estimator of v nor follows
the asymptotic normal distribution. Thus, interval estimations of random effects
differ from those of fixed effects.

o Note that the predictive probability f3(v|y) gives an asymptotically correct inference.
Thus, it is necessary to have a finite sample adjustment to account for information
loss caused by estimating 6. This can be generally done.

o Lee and Kim (2016) showed that

p(vly) = E;(f(viy)) = / F(vIy)F(B = t)dt = / F(vly)e(0 = t)dt,

where ¢(0) is the confidence density in Chapter 1 of Lee, Nelder and Pawitan (2017).
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Prediction of random effects

@ Because the bootstrap distribution gives an estimate of confidence density, we can
have the bootstrap method to get the predictive probability

B
1
P(vly) = 5 D for (vly),
j=1

where 07, ..., 0% are the bootstrap replicates of 0.

@ In complex models it may not be easy to design the bootstrap scheme, so that it is
convenient to generate the bootstrap replicates of 6 from the asymptotic normal
distribution of 8 or the normalized likelihood.

@ Via a simulation studies, Lee and Kim (2016) demonstrate that bootstrap methods
provide excellent prediction intervals for future random effects, including the
prediction of future outcomes in the front.
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ex. Epilepsy - epilepsy(page66).csv

o Longitudinal data from a clinical trial of 59 epileptics (Thall and Vail, 1990)

y : seizure counts during 2-week periods before each of four visits to the clinic
T : 1(new drug), O(placebo)

B : logarithm of the average number of epileptic seizures recorded in the 8-week period
preceding the trial

A : logarithm of age

V : number of clinic visit(a linear trend, coded -3,-1,1,3)
patient : 59 patients

id : 236 data (= 59 patients x 4 clinic visits)
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ex. Epilepsy - epilepsy(page66).csv

Model 1 : Poisson GLM
log pij = Bo + Be;xe + BT, xT + Baxa + Bv;xv + Be,1,xeT
Model 2 : Poisson - normal HGLM (GLMM)
Model 3 : Negative binomial - normal HGLM
Model 4 : Negative binomial - gamma HGLM
Model 5 : Over-dispersed Poisson GLM
Model 6 : Over-dispersed Poisson - normal HGLM

Model cAlC rAIC

Poisson GLM 1647.9 1664.7

Poisson - normal HGLM 1272.7 1350.5

NB - normal HGLM 1201.1 13105

NB - gamma HGLM 1163.9 1274.8
Over-dispersed Poisson GLM 1321.9 13328
Over-dispersed Poisson - normal HGLM  1219.4  1320.9
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Chapter 4. HGLMs: algorithm

Introduction

o HGLMs extend GLMs by allowing random effects in the linear predictor.

@ HGLMs also allow regression models for the residual variance and the variance for
random effects.

o Lee, Nelder and Pawitan (2017) and Ha, Jeong and Lee (2017) described both the
h-likelihood method and IWLS algorithm with related theories.

@ In this chapter, we show how HGLMs can be fitted using interconnected and

augmented GLMs.
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Joint linear model for mean and dispersion

o Consider a linear model
y=XB+e
with e ~ N(0, ®) where ® = diag(¢;).
e The ML estimator for B is 3 = (X 1 X) "1 XTd 1y and var(f) = (X & 1X)"1.

o Now suppose that we have a regression model for the dispersion ¢;
g(¢i) = Giv

where g(-) is a link function and G; is the ith row in a design matrix G.

@ The ML estimate of the regression coefficient of the dispersion v can be computed
by using &2 as response in a gamma GLM with mean ¢;.
@ The REML estimate can also be computed by using é2/(1 — g;) as response in a

gamma GLM having a prior weight (1 — ¢;)/2 where g; is the ith diagonal element
in the hat matrix H = X(X o' X) ' X",
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Joint GLMs for mean and dispersion

@ Suppose y follows the GLM class of model n = X8 with E(y;) = u;,
var(y;) = ¢iV(wi) and the dispersion ¢; follows the regression model g(¢;) = G;
where g(-) is a link function and G; is the ith row in a design matrix.

e Given ¢;, the ML estimator /3 can be obtained by using an IWLS algorithm for GLM
model with prior weight 1/¢;. (full algorithm is described in chapter 2)

B=(X"TWX)'X"Ws, var(B) = (X" wx)!

o Given (3, the ML estimate for the regression coefficient of the dispersion model vy can

be computed by using the deviance d; as response in a Gamma GLM with mean ¢;.

@ The REML estimate can be computed by using d;/(1 — g;) as response in a gamma
GLM having a prior weight (1 — g;)/2 where g; is the ith diagonal element in the hat
matrix H = X(X"WX)'X™W.

GLM é GLM
for for
Mean y Dispersion
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Linear mixed model

o Consider the linear mixed model
y=XB+Zv+e
@ The model can be re-written as an augmented linear model

Y,=X.0+e;

(x5 2)=)e(2)
m v -V

@ The variance-covariance matrix of the augmented residual vector is given by

o (0l 0
var(e;) = W™ = ( 0 /\lm)

@ Data augmentation method can be used to fit random effects v.
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Linear mixed model

@ The estimates from weighted least squares are given by
XIwx,s=xIwy,

which is identical to Hendorsn's mixed model equations.

@ So we can extend the estimation method for joint GLMs to joint GLMs including

random effects by augmenting the response vector.

@ The weight matrix W may then be updated using the estimated variance
components and the algorithm iterates until convergence.

@ Lee and Nelder (2001) showed that the augmented linear model can be extended to
fit the HGLM class of models.
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HGLM class of models

@ HGLM has two random components: a response y and unobserved random effect v,
such that y|v follows a GLM distribution, namely normal, binomial, Poisson, or
gamma.

@ The expectation of the conditional model y|v is

E(ylu) =p
g(n)=Xp+2Zv
v =r(u)

where g(-) is a link function, X and Z are design matrices and S is a fixed effect.

@ The distribution of u is one of the conjugate distributions of GLM family: normal,

beta, gamma, or inverse-gamma.

@ The random effect v is given on an appropriate (weak canonical) scale through the

link function r(-) tranforming u to guarantee correct model estimator.
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IWLS algorithm for HGLMs

@ Consider the heteroscedastic linear mixed model
y=XB+Zv+e

with independent and heteroscedastic random effects v; ~ N(0, \;) and residuals

€j ~ N(O7 ¢,)
@ Now we can allow GLMs for the dispersion (residual variance) and random effect
variance
g1(¢i) = Gum
& (\i) = Gy

@ By taking log link for these variance components, we avoid negative estimates for
variance components.

@ Data augmentation method is used to fit the model.
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IWLS algorithm for HGLMs

@ The REML estimates for 7; can be obtained by applying a gamma GLM to the
response &2/(1 — q;) with weights (1 — q;)/2 for i =1,2,....n

@ Those for > are computed by applying a gamma GLM to the response v:2/(1 — g;)
fori=n+1,n+2..,n4+m

@ The hat value g; are obtained from the hat matrix of the augmented model.

Figure 4.5 Interconnected GLMs for HGLMs with structured dispersions.
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IWLS algorithm for HGLMs

@ Now we consider a HGLM such that

o y|v follows a GLM distribution with n = X + Zv.
o u follows any conjugate distribution of GLM family with gi(¢;) = G1;71 and
& (\i) = Gaie.
@ Then the REML estimates for 7; can be obtained by applying a gamma GLM to the
response d;/(1 — g;) with weights (1 — ¢;)/2 where d; is the deviance from y|v GLM

fori=1,---,n.

@ Those for ~, are computed by applying a gamma GLM to the response d;/(1 — g;)

where d; is the deviance from v GLM fori=n+1,--- ,n+ m.

@ We allow various GLMs to y and v in the augmented response (Z’) to fit random

effect model.

o We use inter-connected JGLM fit for mean and dispersion of ¢ and A.
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ex. Epilepsy continued

Review : Poisson GLM
Model : log pjj = Bo + Be;xg + Br,xT + Baxa + Bv;xv + Be;T,x8T

Over-dispersed Poisson GLM

@ Poisson GLM gives a deviance of 869.9 with degrees of freedom 230, clearly
indicating over-dispersion. To accommodate this, we may fit the over-dispersed
Poisson model with var(y) = ¢u.

o For the parameter estimation of ¢, we may use the deviance or Pearson chi-squared
statistic.

o From the deviance we have ¢ = 3.8 = exp(1.33) = 869.9/230
o From the Pearson chi-squared statistic we have ¢ = 4.5 = exp(1.505) = 1036.3/230
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ex. Epilepsy continued

@ Because the deviance residuals are the best normalizing transformation under the
exponential family, it gives an estimator with small variance, but it gives an

inconsistent estimate.

o Hilbe (2014) recommended to use the Pearson chi-squared statistics because it gives

a consistent estimator.

@ In finite sample, the deviance often gives more efficient estimators (Nelder and Lee,
1992). Thus, it is recommended to use the deviance in small samples.

@ Correlation among repeated measures should be considered, so HGLM should be
used for further analysis.
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ex. Injection - injection(page68).csv

@ An industrial Taguchi experiment was performed to study the influence of several

controllable factors on the mean value and the variation in the percentage of

shrinkage of products made by injection molding (Engel, 1992).

y : percentage of shrinkage of products made by injection molding

Controllable factors Noise factors

A : cycle time M : percentage regrind
B : mould temperature N : moisture content

C : cavity thickness O : ambient temperature
D : holding pressure

E : injection speed

F : holding time

G : gate size
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ex. Injection - injection(page68).csv

@ This dataset has been attended by many researchers because the model checking
plots were not satisfactory.

o Lee and Nelder (1997) gave extensive discussion on how to choose a good model
and presented the heteroscedastic log-linear model.
Heteroscedastic log-linear model

@ Model with log-normal distribution and the identity link n =

Mean Model

n=Po+ PaA+ BcC+ BpD + BeE + BcG + BuN + Bc.nC - N+ Be.nE- N
Dispersion Model
log ¢ =0 +vaA+vrF
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ex. Crack growth continued

Review : Gamma GLM
Model : n =logpu = o+ B crack0

Gamma GLM with structured dispersion
o We may estimate ¢ either based on deviance or Pearson chi-squared statistic.

o In this example, degrees of fredom is large (239). We may prefer the Pearson
chi-squared statistic in estimating ¢.

Mean Model : n = logu = o + P1 crack0
Dispersion Model : log ¢ = v + 71 cycle
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ex. Bacteria - bacteria(page76).csv

@ Tests of the presence of the bacteria H. influenzae in children with otitis media in
the Northern Territory of Australia (MSHR 1999-2000 Annual Report).

y : 1(presence), O(absence)
ap : a(active), p(placebo)
hilo : hi(high compliance), lo(low compliance)
week : number of week at test (0,2,4,6,11)
ID : subject ID
trt : placebo, drug(a & lo), drug+(a & hi)
Binomial GLMM

o pj = P(yj = 1|vi)

e v; ~ N(0,\)

Ui

log <lf,,> = fo + Bul(i = drug) + B1(i = drug+) + i
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Chapter 5. HGLMs: Modeling

@ In this chapter, a number of dataset are modeled using HGLMs.

@ In the first few example we show analyses using normal, log-normal, gamma,

Poisson, and binomial HGLMs.
@ Thereafter, examples using HGLMs including structured dispersion are given.

@ We also fit models with correlated random effects, including spatial models.
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ex. Cake - cake(page95).csv

@ Experiment on the preparation of chocolate cakes, conducted at lowa State College
(Cochran and Cox, 1957).
Replicate : 15 replications
Batch : 3 batters
Recipe : R1(Recipe I), R2(Recipe Il), R3(Recipe III)
Temperature : 6 different baking temperatures (175 °C ~ 225 °C)
Angle : breaking angle
inter : Batch?

logAngle : logarithm of Angle
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ex. Cake - cake(page95).csv

Normal linear mixed model
e i =1,2 3 for recipes, j = 1,--- ,6 for temperatures and k = 1,--- , 15 for replicates.
o yik|vi, vik ~ N(pijk, %)
ik = p+ i + 75+ (Y7); + vk + Vi
Log-normal linear mixed model
@ The same model but with responses log yj gives a better fit.
log puijk = p+vi + 75 + (¥7); + vie + Vi

Gamma GLMM

11
® yik|vi, vik ~ Gamma (5, #Uw)

log pijk = p+ i + 75 + (v7); + Vi + Vi
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ex. Fabric - fabric(pagel00).csv

o Fabric data (Bissell, 1972).
| : fabric length
y : number of faults in a bolt of fabric

rf : 32 observations

x : logarithm of fabric length

log(no. o faults)

log(length)
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ex. Fabric - fabric(pagel00).csv

Poisson GLM
@ y ~ Poi(u) and x = log |
log = a+ Bx
@ Deviance = 64.5 with 30 df: over-dispersion
@ It may be caused by the assumed Poisson regression model begin incorrect (Azzaline
et al., 1989 and Firth et al., 1991).
Poisson-gamma HGLM

@ Bissell(1972) proposed the use of the negative binomial model, which can be fitted
via a Poisson HGLM.

° y|u~ Poi(n)

@ When u follows the gamma distribution with E(u) = 1 and var(u) = A,

logu = a+ Bx +logu

89 /282



ex. Train continued

Review : Poisson GLM
o y ~ Poi(u)
logu =logt+ a+ Bx

Poisson-gamma HGLM
o Fitting the data assuming a Poisson GLM, there exist two outliers which give
marginally significant lack of fit.

@ we fit a negative binomial model via a Poisson-gamma HGLM with saturated
random effects for full response, number of train accidents.

o ylu ~ Poi(n)

@ When u follows the gamma distribution with E(u) = 1 and var(u) = A,

logpu =logt+ a+ Bx + logu
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ex. Salamander - salamander(pagel05).csv

@ Three experiments were conducted : two were done with the same salamanders in
the summer and autumn and another on in the autumn of the same year using
different salamanders (McCullagh and Nelder, 1989).

@ In each experiment, 20 females and 20 males were paired six times for mating with
individuals from their own and the other population, resulting in 120 observations in
each experiment.

Season : Summer, Autumn

Experiment : 3 experiments

TypeM : type of male. 1(whiteside), O(rough butt)
TypeF : type of female. 1(whiteside), O(rough butt)
Cross : TypeM x TypeF

Male : 60 males (20 males for each experiment)
Female : 60 females (20 females for each experiment)

Mate : success of mating. 1(success), O(failure)
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ex. Salamander - salamander(pagel05).csv

Binomial GLMM
@i, j=1,---,20and k=1,2,3

@ yijk : The outcome (Mate) for the mating of the i-th female with the j-th male in
the k-th experiment.

pik = P(yix = 1|vi, vi¥)

Vi ~ N(0,07), vii' ~ N(0,07,)

Iog( Pl ) = Bo+ Fi+ M; + (FM); + vi + vt
1 — pijk
@ There have been many methods developed to obtain approximate ML estimators.

Noh and Lee (2007) showed that HL(1,2) has the smallest bias while HL(1,1) is fast
with results as follows.
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ex. Integrated circuit - circuit(pagel07).csv

@ The width of lines made by a photoresist-nanoline tool were measured in five
different locations on silicon wafers, measurement being taken before and after and
etching process being treated separately (Phadke et al, 1983).

@ 9 experimental factors (A-1) arranged in an Lig orthogonal array and produced 33
measurements at each of 5 locations, giving a total of 165 observations.

Width : width of line

Wafer : 33 silicon wafers

Experimental factors

A : mask dimension F : aperture

B : photoresist viscosity G : exposure time
C : spin speed H : developing time
D : bake temperature | : etch time

E : bake time
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ex. Integrated circuit - circuit(pagel07).csv

Linear Mixed Models with structured dispersion
@ g: index for wafers(1~33), r: index for observations within wafers
@ i, j, k,I,m n,o,p: index for A-H
@ vy ~ N(0,)\) and e; ~ N(0, ¢)
Yijkop,qr = Po + ai + bj + ck + 8o + hp + vq + €gr

@ ) and ¢ represent the between-wafer and within-wafer variances respectively, which

can be affected by the experimental factors.

The dispersion and random effect variance can be modeled as
log Gimno = 7o' + ai + ey + f,” + &0

log Am = 70 + €m

94 /282



ex. Semiconductor - semiconductor(pagel09).csv

@ Designed experiment in a semiconductor plant, which is of interest to study the
curvature or camber of the substrate devices produced in the plant (Myers et al.,

2002).
@ There is a lamination process, and the camber measurement is made four times on

each device produced.

Device : 16 devices

x1-x6 : 6 employed factors (each design variable is taken at 2 levels)

y : camber taken in 10™* in./in.

Gamma HGLM with structured dispersion

o When y|v ~ Gamma with E(y|v) = u and Var(y|v) = éu°,
log i = Po + X151 + X33 + X535 + X656 + v

log ¢ =70 + X272 + X373
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ex. Respiratory - respiratory(pagelll).csv

o Data from a clinical trial comparing two treatments for a respiratory illness (Strokes
et al., 1995)

@ In each of two medical centers, 111 patients were randomly assigned to active
treatment (54) or placebo (57). During treatment, respiratory status was determined
at 4 visits.

y : respiratory status during treatment. 1(good), 0(poor)
patient : 111 patients

treatment, trt : 1(active treatment), O(placebo)

sex, msex : 1(male), O(female)

age : age of patients

center : 2 medical centers

baseline, base : baseline respiratory status. 1(good), 0(poor)

past : respiratory status for last visit. 1(good), 0(poor)
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ex. Respiratory - respiratory(pagelll).csv

Binomial HGLM with structured dispersion
e j=1,---,111and j=1,2,3,4
o pj = P(yj = 1|vi, yij-1))
@ Vv~ N(O,)\,‘)

log (1pu> = B + B rt; + B msex; + 8" age,
— Pij

+ B center; + " base; + B yi;_1) + vi

The random effects have a structured dispersion.

log \i = ((f‘) + Bp)age,

97 /282



ex. Orthodontic growth - orthodont(pagel13).csv

o Data contain the growth measurement of 27 childrens from age 8 until age 14
(Pinheiro and Bates, 2000).

@ Every two years, the distance between the pituitary and the pterygomaxillary fissure
was recorded using x-ray images of the skull.

distance : distance of the subject (mm)

age : age (8, 10, 12, 14)

Subject : 16 male(boys) and 11 female(girls)
Sex : Male, Female

M : 1(Male), O(Female)

Mage : Mxage

F : 1(Female), 0(Male)

Fage : Fxage
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ex. Orthodontic growth - orthodont(pagel13).csv

Correlated random intercept and slope model
@ yj: distance of the i-th subject at the j-th age Aj
@ €j~ N(07 ¢U)

@ The random intercept vi; and random slope v; are assumed to be bivariate normal

distribution. (vi, v2;)T ~ BVN <O, ( M P >\1>\2>>
PV )\1A2 )\2

yi = BiFi + B2FiAj + B3Mi + BaMiAj + vai + Ajvai + €5
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ex. Scottish lip cancer - lip(pagell5).csv

o Clayton and Kaldor (1987) analyzed observed and expected numbers of lip cancer
cases in the 56 administrative areas of Scotland with a view to produce a map that
would display regional variation in cancer incidence and yet avoid the presentation of

unstable rates for the smaller areas.
@ Presumably the spatial aggregation is due in large part to the effects of
environmental risk factors.
logE, n : Logarithm of expected numbers of lip cancer cases
O, y : Observed numbers of lip cancer cases

Paff : The percentage of the work force in each area employed in agriculture, fishing, or

forestry.
county : 56 administrative areas

x : Paff/10
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ex. Scottish lip cancer - lip(pagell5).csv

Poisson HGLM
o yilvi ~ Poi(pi)

log i = log nj + Bo + B1xi/10 + v;

@ The random effect v; represented unobserved area-specific log-relative risks. They
tried 3 models.

M1 Vi ~ N(O, )\)
M2 v; ~ intrinsic autoregressive model (IAR)

M3 v; ~ MRF in which Var(v)™! = (I — pM)/), where M is the incidence matrix
for neighbours.
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ex. Scottish lip cancer - lip(pagell5).csv

@ Lee and Nelder (2001) chose the model M3 as best.
o The MRF model with p = 0 is the M1 model.
o MRF with p = 0.174 provides a suitable model.

@ We found that the main difference between M1 and M3 is the prediction for county
49, which has the highest predicted value because it has the largest n;. This gives
the very large leverage value (or hat value) of 0.92.

@ Though model checking plots are useful, our eyes could be misled, so that objective
criteria based upon the likelihood are also required in the model selection.
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ex. Loaloa - loaloa(pagell7).csv

o Dataset describes prevalence of infection by the nematode Loa loa in North
Cameroon, 1991-2001 (Rousset et al., 2016).

@ The study investigated the relationship between altitude, vegetation indices, and
prevalence of the parasite.

id, LOC : 197 locations

longitude : longitude of locations

latitude :latitude of locations

y : number of infected individuals at location

n : number of individuals at location

x1 : altitude (m)

x2-x4 1 x2 = max (x1 — 650, 0), x3 = max (x1 — 1000, 0), x4 = max (x1 — 1300, 0)

x5 : maximum normalized-difference vegetation index (NDVI) from repeated satellite
scans

x6 : standard error of NDVI
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ex. Loaloa - loaloa(pagell7).csv

Binomial HGLM with the logit link

o yi|vi ~ Binomial(nj, pi)

log (1 fip'> = Bo + Pix1 + Paxo + Paxz + Baxa + Bsxs + PBexe + Vi

o The random effect v; is for the i-th location. Rousset et al. (2016) fitted HGLMs

M1 v; ~ independent N(0, \)
M2 v; ~ normal distribution with variance A and Matern correlation for two

locations which is represented by
(pd)" K. (pd)
2v—1T(v)

(1 — Nugget)
o Nugget: parameter describing a discontinuous decrease in correlation at zero distance
@ p: scaling parameter, v: smoothness parameter

@ K,: bessel K function of order v and d is distance computed by longitudes and

latitudes for two locations
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ex. Gas Consumption - gas(pagel18).csv

@ Durbin and Koopman (2000) analyzed the lagged quarterly demand for gas in the
UK from 1960 to 1986.
y : Lagged quarterly demand for gas
year : 1960-1986
quarter : ql-q4
time : 108 times = 27 yearsx4 quarter
t43, t44 : 1 if time=43 or time=44
cosl, sinl : cos(27t/104) and sin(27t/104) (t : time)
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ex. Gas Consumption - gas(pagel18).csv

Model 1 for gas data

Durbin and Koopman (2000) considered a local linear-trend model with quarterly

seasonals which can be represented as a normal HGLM.

fr = 25:1 rj and 5 = Ejt:l(t — j + 1)p; are random effects for the local linear

trend, the quarterly seasonal g: with w, = Z?:o Gi—j.

re ~ N(0,Ar), pe ~ N(0, Ap), we ~ N(0, Aw), e ~ N(0, ¢¢)
Yi=a+Ff+si+q+ e

Lee, Nelder, and Pawitan (2017) add a linear trend St and found that the random

walk f; is not necessary. Thus, they considered a model
Ye=oa+Bt+ s+ g+ e

The residual plot displays apparent outliers, caused by a disruption in the gas supply
in the 3rd and 4th quarters of 1970.
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ex. Gas Consumption - gas(pagel18).csv

Model 2 for gas data

o Lee, Nelder, and Pawitan (2017) proposed to delete the random quarterly seasonals
and add further fixed effects to model the 1970 disruption and seasonal effects.

ye=a+tB+ ai+ tBi + d1l(t = 43) + &I(t = 44)
+ y1sin(27t/104) 4 ~2cos(2mt/104) + s¢ + e

o Lee, Nelder, and Pawitan (2017) further found extra dispersion in the 3rd and 4th
quarters, which led to a structured dispersion model.

log ¢: = + i
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ex. Prestige - prestige(pagel22).csv

@ Prestige data from R package "car” (Fox et al., 2016)
id : jobs
education : average education of occupational incumbents (year)
income : average income of incumbents ($)
women : percentage of incumbents who are women
prestige : Pineo-Porter prestige score for occupation
census : Canadian Census occupational code

type : type of occupation. bc(Blue Collar), prof(Professional, Managerial, and
Technical), we(White Collar), NA
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ex. Prestige - prestige(pagel22).csv

Additive non-parametric regression model
@ fi(-) and () are unknown functions.

e ¢ ~ N(0,0%)
yi = fi(x1i) + h(xi) + e

@ Suppose that cubic smoothing splines are used to fit these unknown functions f(-)
and f(-), which are characterized by singular precision matrices, P; and P>,

respectively (Lee, Nelder, and Pawitan, 2017).
@ This additive model can be fitted by using an HGLM.

yi= X,-TB + vii + voi + €

o x7 = (1,x1,x), vi ~ N(0,P]) and v» ~ N(0, P;") are random effects with P*

being the Moore-Penrose inverse of P.
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ex. Prestige - prestige(pagel22).csv

@

2Bnsed

25000

o The regression surface £ (x1;) + f(x2;) from the additive model shows that prestige
increases with income and education.
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Chapter 6. DHGLMs

@ We represent a DHGLM as {model(u), model(¢)}
@ The original GLM: {GLM(u), constant}

n(u) _ g(u)(u) _ x(u)ﬁ(u)
@ The joint GLM: {GLM(u), GLM (¢)}
" = g (p) = x® g n® = g9 (g) = X3
@ The HGLM: {HGLM(u), constant}
7’(u) _ X(“)B(“) 4+ Zm
@ The HGLM with structured dispersion: {HGLM((u)), GLM(¢)}
g = XU ) 4 7w 0 @ = X9

™ = X g™
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DHGLMs

o The DHGLM: {HGLM(y), HGLM()}

) = X g L Z(k) () n® = X@p@ 4 7))
™ = xR (@ = x5

o The DHGLM: {DHGLM(1), GLM(4)}

) = XU 4 7,00 @ = X 3®)
™ = XM g0 L 700,
™ = X

o The DHGLM: {DHGLM(1), HGLM(¢)}

,,]( B _ X(M)ﬂ(#) + ZzW n((ﬁ) _ X(¢)ﬁ(¢) 4 Z(@),(9)
7] - x®™ /8 + ZM N ,,.,(04) _ X(a),B(a)
,,]( T X(T)/B(T)
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ex. Crack growth continued

Review : joint GLM

77U = loguij = (()M) + /BYL) li—1
) = logey = 5 + Bt

DHGLM
o when v} ~ N(0,A) and v!?) ~ N(0, @),

nu = logpy = By + B ly—1 + v
0\ = logey = B + Bt + v\

@ cAIC selects this DHGLM as the best-fitting model.

@ We can conclude that heteroscedasticity between metallic specimens exists
significantly in the mean as well as in the dispersion.
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ex. Crack growth continued

@ By using the studentized deviance residuals, we can obtain model-checking plots of

the model objects.

Normal Probability Plot Normal Probability Plot

o2 ~ 4

Sample Quantiles
0
1

Sample Quantiles
-2
L

-2 -1

-4
(e

Theoretical Quantiles
Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

@ Most of the outliers in HGLM, caused by abrupt changes among repeated measures,
disapper when random effects are allowed in the model for the residual variance.
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ex. Gas consumption continued

Review : HGLM
Ye=a+ tB+ ai + tfBi + d1l(t = 43) + 6/(t = 44)
+ y15in(27t/104) 4 ~2cos(27t/104) + s¢ + e;
log ¢r = ¢ +4i
DHGLM

o Consider the follow DHGLM, allowing heavy-tailed distriution for e;
o When v*) ~ N(0, ),

Vi =+ tﬂ + o + tﬂ,‘ —+ 51/(1‘ = 43) —+ 52/(t = 44)
+ y1sin(27t/104) + vyocos(2mt/104) + s¢ + e
log e = + i + v

@ cAIC selects DHGLM as the best-fitting model.
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ex. Gas consumption continued

@ The likelihood-ratio test for Hp : o = 0, based on the restricted likelihood, rejects
the null hypothesis (deviance difference : 18.8 > x3;(1) = 2.71 with significant level

0 = 0.05)
Normal Probability Plot Normal Probability Plot
5
©® - 0 (o)
o
o
3 ~ ocao é _
3 g °7
2 o o 2
g £ T
© — [}
(9] [ (\Il -
Fq.° o0
° T T T T T T T

Theoretical Quantiles Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

@ We see that a big outlier in HGLM disappeared under the DHGLM.
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ex. Exchange rate - exch(pagel48).csv

@ Daily observations for the weekday closing exchange rates for the U.K. Sterling/U.S.
Dollar from 1/10/81 to 28/6/85 (Harvey et al., 1994).

rt : Exchange rate at time t

yt : Mean-corrected returns. y: = 100 (Iog(rt/rt_l) — %27:1 Iog(r,-/r,-_l))
ytl @ yeq

yti2 :y?

date : 936 observations

@ Consider the model
Yt = v ¢t2t

where z; is the standard normal random variable and ¢; is a volatility at time t.
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ex. Exchange rate - exch(pagel48).csv

ARCH(1) model
@ Engle (1982) introduced the ARCH model of order 1.

de = B + By,

@ This is a joint GLM GLM(u = 0), GLM(¢), which can be fitted by specifying the
identity link function for GLM(¢) and fixing the mean null.

GARCH(1,1) model
o The ARCH(1) model was extended to the GARCH(1,1) model by Bollerslev (1986).

¢ = Béd)) + ﬂ%qﬁ))’t{l + Y1
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ex. Exchange rate - exch(pagel48).csv

o By letting 3. = 8\ /(1 — p) with p = 8 + 4,

Vt(¢) = e — 5S(¢)
= 66" + By + vder — 55"
= 55+ BOyE 1+ p(¢e-1 — 55D = B per — (1 - p)B5"?
)+ 801+ pldea — 87 = B per — B
= p(¢e1— B D) + B (1 — be)

— el

where rt(¢) = BYM (Y21 — de-1).
@ Thus, the GARCH(1,1) can be written as a dispersion model with correlated random

effects
be = Bg(d)) + V£¢)

where v§¢) = pvt(f)1 + rt(¢).
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ex. Exchange rate - exch(pagel48).csv

@ To avoid negative volatility, we can consider the exponential GARCH (EGARCH),
with a log link n§¢) = log ¢+

0 = 867 + By + i)

which is equivalent to
) = g1 4 o)

Stochastic volatility (SV) model
o If we take r{® ~ N(0, @), i.e., V@) = pvt(f)1 +r? ~ AR(1), we have the stochastic
volatility (SV) model originating from Harvey et al. (1994).
@ For the data, SV model has cAlIC = 1807 which has less than cAIC = 2006 for
ARCH and cAIC = 1863 for GARCH models, so that SV model is the best one

among alternative models.
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ex. Orthodontic growth continued

Review : HGLM with random slope model
yi = BiFi + B2FiAj + BsMi + BaMiAj + vai + Ajvai + €5

DHGLM

@ Noh and Lee (2007) showed that a robust analysis against such outliers can be
obtained by adding random effects to the residual variance ¢;.

@ Thus, we consider the following DHGLM

vi = BYVF + B FiAy + B M; + B MiA; + 8 + Al + e
log(¢y) = A" + v

where v,(¢) ~ N(0, ).
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ex. Orthodontic growth continued

@ Among models we considered, cAlC selects DHGLM as the best fitting model.

@ The likelihood-ratio test for Hp : o« = 0 based on the RL, rejects the null hypothesis
(deviance difference : 37.9 > x35(1) = 2.71 with significant level § = 0.05)

Sample Quantiles

Normal Probability Plot Normal Probability Plot

Sample Quantiles
0
1

-2 -
1
o

Theoretical Quantiles Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

o Model checking plots for the DHGLM show that all large outliers (whose sizes are

bigger than 4) disappear.
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ex. Schizophrenic behavior - schizophrenic.csv

@ Schizophrenic behavior data from an eye-tracking experiment with a visual target

moving back and forth along a horizontal line on a screen (Rubin and Wu, 1997).

@ The outcome measurement is called the gain ratio, and it is recorded repeatedly at
the peak velocity of the target during eye-tracking under three conditions (PS:plain
sine, CS:color sine, TR:triangular).

o In the experiment, exch subject is exposed to 5 trials, usually 3 PS, 1 CS, and 1 TR.

@ During each trial, there are 11 cycles. However, for some cycles the gain ratios are
missing beacuse of eye blinks.

@ On average, there are 34 observations out of 55 cycles for each subject (2906
observations from 4730 cycles).

@ We assume (for simplicity) that the missing data are missing at random (MAR).
Under MAR assumption, we can perform the analysis using only observed data.
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ex. Schizophrenic behavior - schizophrenic.csv

y : gain ratio = (eye velocity)/(target velocity)
x1 : 1/2(PS), -1/2(CS), O(TR)

x2 1 -1/3(PS or CS), 2/3(TR)

sex : -1/2(female), 1/2(male)

time : measurement time

schiz : 1(schizophrenic), 0(non-schizophrenic)

subject : 43 non-schizophrenic subject (22 females and 21 males) and 43 schizophrenic
subject (13 females and 30 males)
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ex. Schizophrenic behavior - schizophrenic.csv

HGLM

@ yj : gain ratios for the j-th measurement of the i-th subject.

yi = B8 +xasBl + B + 88 + schiB) + schy - xay B
+ sch; - xzﬂé“) + v,.(“) + e

where v ~ N(0, \) is the subject random effect, e; ~ N(0, ¢) is a white noise.

1

@ We find that schizophrenic patients have a larger variance.

log(¢r) = B5” + schiBL”)
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ex. Schizophrenic behavior - schizophrenic.csv

DHGLM

@ Psychologists have known for a long time about large variations in
within-schizophrenic performance on almost any task (Silverman, 1967). Thus,
abrupt changes among repeated response may be peculiar to schizophrenics and
such volatility may differ for each patients.

@ Such heteroscedasticity among schizophrenics cannot be modeled by the fixed effect
model, but can be modeled by a DHGLM, introducing a random effect in the

dispersion.

o When v,(¢) ~ N(0, @),

log(i) = B + schiB\?) + schiv(®)

° v,(“) and v,-w) are independent.
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ex. Schizophrenic behavior - schizophrenic.csv

@ cAIC shows that DHGLM has a better fit than HGLM.

@ By using the studentized deviance residuals, we can obtain model-checking plots.

Normal Probability Plot Normal Probability Plot
< o o
o~ N7
@ @
2 2
g °1 § o
S S
S | <]
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a [~} (\‘l -
§ T §
[} [}
° <
¢4 o [ )
o o
T T T T T T T T T T T T
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

@ We see that most of the outliers in HGLM, caused by abrupt changes among
repeated measures, disappear when random effects are allowed in the model for the

residual variance.
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ex. Respiratory continued

Review : HGLM

log (pUP> = 8§ + B ert; + B msex; + 51 age,
i

+ ﬂﬁu)centen + ﬂé“)base; + Béu))’i(jfl) Tvi
log \i = A + BV age,

DHGLM
o With binary data, it is difficult to identify the distribution of random effects.

@ The use of a heavy-tailed distribution for random effects by allowing random effects
for A, removes sensitivity of the paramter estimation to the choice of random effect
distribution (Noh et al, 2005).

o For binary data, they showed that GLMM estimators can give serious biases if the

true distribution is not normal.
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ex. Respiratory continued

@ Consider the following DHGLM,

log <1Pup> BO“) + ,Biu)trt, + ﬂ2 msex; + B(”)age,—
— Pi

+ 64 center; + ﬁé“)base, + B8Py + vi
log \i = ﬂo + 51 age; + v,.
where v ~ N(0, \;) and v ~ N(0, 7).

@ The likelihood-ratio test for Hy : 7 = 0, based on the restricted likelihood, rejects the
null hypothesis (deviance difference : 3.3 > x35(1) = 2.71 with significant level
6 =0.05)
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ex. Respiratory continued

Normal Probability Plot Normal Probability Plot
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Figure: Normal probability plots of A for HGLM and DHGLM

@ We see that liarge outliers, and anunpleasane pattern in the normal probability plot
under the HGLM, disappear under the DHGLM. Thus, the DHGLM is preferred.

o Furthermore, there are apparent differences between parameter estimates.
@ In this case, we should report the results from the DHGLM because a distributional

assumption of random effects is hard to identify with the binary data.
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ex. Salamander continued

Review : HGLM

Iog(lpiﬂ;> = Bo + Fi 4+ Mj + (FM); + vj + Vit
~ P

DHGLM
@ For this binary set, we fit a DHGLM model
o (25 ) =+ A0+ )
log(Ai) = By’ + bjy
log(Amix) = B + b,

where v ~ N(0, Asx), v ~ N(O, A ), b ~ N(0,7¢), and bOY) ~ N(0, 7).

mjk
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ex. Salamander continued

@ The cAIC difference between HGLM and DHGLM is less than 1, so that there would
be no advantage to use the heavy-tailed distribution, compared with the normal
distribution.

@ The likelihood-ratio test for Hy : 7+ = 0,7, = 0 based on RL does not reject the null
hypothesis (deviance difference : 2.4 which has p-value of
0.243 = 0.5 x P(x*(1) > 2.4) + 0.25 x P(x?) > 2.4) (Self and Liang, 1987).

o Estimates between HGLM and DHGLM are slightly different, which also strongly
indicating the adequacy of normality for the distribution of random effects.
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ex. Bacteria continued

Reviewd : Binomial GLMM
o pj = P(y; = 1|v)

log <lfup) = fBo + Sul(i = drug) + B21(i = drug+) + vi
ij

where v; ~ N(0, \)
DHGLM
e We fit a follow DHGLM model.

log (pjp> - 3”) + B 1(i = drug) + B 1(i = drug+) + v
ij
log(\i) = N4 V( )

where v ~ N(0, \j) and v ~ N(0, 7).
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ex. Bacteria continued

@ cAIC from the HGLM is 205.0, while that from the DHGLM is 204.5.
@ The cAIC difference is less than 1, so that there would be no advantage to use the

heavy-tailed distribution.

@ The likelihood=ratio test for Hp : 7 = 0 based on the RL, does not reject the null
hypothesis (deviance difference : 0.8 < x35(1) = 2.71 with significant level
0 = 0.05).

o Estimates between HGLM and DHGLM are only slightly different, which also
strongly indicates the adequacy of normality for the distribution of random effects.
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ex. Epilepsy continued

log(ui) = (M) + Xs; BB + XT,B + XA,ﬂE\”) + xv; ﬁ(”) + XxB;T; 537— + V + Véu)

log( A1) = By (’\1 + v and

NB-gamma HGLM

D G(\i), vi(>\1) =0,
Poisson-normal DHGLM

" N0, Ars), v ~ N(O,7),
Poisson-normal-gamma DHGLM

D N(O,/\li), Vi()‘l) -0,
Poisson-gamma-gamma DHGLM1

D G(\i), vi(>\1) -0,
Poisson-gamma-gamma DHGLM2

M 6(w), v ~ N(0,7),
quasi Poisson-normal DHGLM

“ o N0, A1), v ~ N(0, 1),

log(Nai) = A3 + v/

M o G(Aay), and v(/\Z) =0

VI,J(,“) =0, and v,-Y‘Z) =0
")~ G(Agj), and v ~ N(0, 72)
")~ G(Ayj), and vw) ~ N(0,72)
")~ G(Myj), and vw) ~ N(0,72)

i

and var(yj| v,.(

) =
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ex. Epilepsy continued

@ The likelihood-ratio test for Hp : 72 = 0 based on the RL rejects the null hypothesis
(deviance difference : 32.4 > x3;(1) = 2.71 with significant level § = 0.05 between
NB-gamma HGLM and Poisson-gamma-gamma DHGLM1).

@ The likelihood-ratio test for Hy : 71 = 0 based on the RL doesn't rejects the null
hypothesis (deviance difference : 0 between Poisson-gamma-gamma DHGLM1 and
Poisson-gamma-gamma DHGLM?2).

@ Thus, the likelihood-ratio test selects the Poisson-gamma-gamma DHGLM1.

Model cAlC rAlIC
NB - gamma HGLM 1163.9 1274.8
Poisson - normal DHGLM 1270.5 1349.1

Poisson - normal - gamma DHGLM 1183.0 1282.7
Poisson - gamma - gamma DHGLM1 11442 12444
Poisson - gamma - gamma DHGLM2 1146.1 1246.4

quasi Poisson - normal DHGLM 1217.2 1319.6
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ex. Stroke - stroke(pagel67).csv

o Approximately 30% of hospitalized patients due to acute ischemic stroke are placed
in the risk of early neurologic deterioration (END) at their hospital stay.

@ The patient’s risk to END can be monitored by following their blood pressure (BP).

@ Data has systolic BP (SBP) with time in hours after arriving at the emergency room
for two stroke patients (one is END; the other is non-END).

time, timel : Times after arriving at the emergency room (hrs)
y1l : SBP of END stroke patient
y2 : SBP of non-END stroke patient
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ex. Stroke - stroke(pagel67).csv

Joint spline model

@ For detection of changes in SBP with respect to time, we use cubic splines
(Silverman, 1967; Green and Silverman, 1994) not only for the mean changes but
also for variance changes, using the joint cubic splines model (Lee and Nelder, 2006).

@ y: : SBP measurement at time t, e; ~ N(0, ¢:)

o fm(t) and f4(t) : unknown functions of the mean and variance.
¥e = fm(t) + e and log ¢: = f4(t)

o For joint fitting of the mean p; and variance ¢;, we use the DHGLM.

pe = B + B 4 v

g 6 = £} wnw)

where vt(“) vt(d)) is the random component with mean 0 and a singular precision

matrix P/AW [P/A)] (Lee, Nelder, and Pawitan, 2017).
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ex. Stroke - stroke(pagel67).csv

mean variance

Figure: Joint cubic splines for SBP (END: solid line, non-END: dashed line)

@ Mean patterns for END and non-END patients are similar, so that it has been very
difficult to predict the potential END patients. However, it can be noticed from the
plot that the END patient has higher variance in SBP than non-END patient.

@ Thus, the variance of the SBP is used as a covariate for predicting an END event,
which greatly prevents the occurrence of END patients in the emergency room in

Korea.
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ex. Curve - curve.csv

@ The raw data are generated from normal distribution with the true mean and
variance, described in plot.
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25 125
s g

3 & 100
s 0 5
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75

25
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0 25 50 75 100 0 25 50 75 100
X X

140 / 282



ex. Curve - curve.csv

Raw data
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An extension of linear mixed models via DHGLM

@ The IWLS algorithm gives fast computations using GLM estimations.
(¢

«—
a

Figure 6.11 Interconnected GLMs for fitting DHGLMs.
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An extension of linear mixed models via DHGLM

@ Consider the DHGLM introduced in Chapter 1(1.4)
y = XWgw) ¢ z)yk) 4 o
e ~ N(0,exp(X(?)3(9) 1 z(9),(9)y)

with v(®) ~ N(0, M), v(®) ~ N(0, al), cor(v(®), v(#)) = 0
@ We specify the h-likelihood to show that it is rather easy to specify even though the model
is rather advanced.

h = log(f(y|v(*), v(?))) + log(£(v{")) + log(f(v(?)))
_ %bg(w\) _ %(y (x50 1 Z) 0y T -1
X (y — (X(H)B(M) 4+ z® V(u)))
m 1 T
— Zlog(3) = 55 (V)T (V)
m 1 T
— 2 log(a) = 55 (V)T (W)

where V = diag(exp(X(#)8(#) 4 Z(#)y(9))),

@ We could allow correlations among all random components e, v(#), v(#) which leads to
many other interesting models to explore.
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Chapter 7. MDHGLMs

@ As a most general model for a single response, we presented a DHGLM, which has a
great room for further generalization by including more general correlation patterns
among random effects.

@ In this chapter, we introduce multivariate models for various types of responses
including continuous, proportion, counts, events, etc.

@ We show that general multivariate models can be generated by connecting DHGLMs
for various responses with correlated random effects.

o Correlation bewtween random components is essential in the definition of joint
models, where correlations among multivariate responses are modeled via correlated
random effects.
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Ethylene glycol - EG(pagel78).csv

o Data from a study on the developmental toxicity of ethylene glycol (EG) in mice
(Price et al., 1985).

o Times-pregnant CD-1 mices were dosed by gavage with EG in distilled water on
gestational days 6 through 15.
litter, id : 94 dams
dose : dose (g/kg)
yl : fetal weight (g)
y2 : 1(malformation), O(not)

dose2 : dose?

Malformations Weight (g)

Dose (g/kg) Dams Live No. % Mean (5.D)
0.00 25 207 1  (0.34) 0972 (0.0976)
0.75 24 276 26  (9.42) 0.877 (0.1041)
1.50 22 220 89 (38.86) 0.764 (0.1066)
3.00 23 226 129 (57.08) 0.704 (0.1238)
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Ethylene glycol - EG(pagel78).csv

Bivariate HGLM

o v = (y1jj, y2ij)" : bivariate responses from j-th mouse, born from i-th dam

@ v; = (wj, u;)" : unobserved random effects for the i-th dam

@ It is assumed that y1;; and y»; are conditionally independent given v;.

Weight
N

Drug

Malformation
V2

—CO

Figure: Path diagram for the MDHGLM fitted to the EG data
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Ethylene glycol - EG(pagel78).csv

@ Hence, the following bivariate HGLM is proposed

yuiilwi ~ N(uj, @)

where Mij = Xlijﬁl =+ wi,

yoii|ui ~ Bernoulli(pj)

where log <lf"’,'),) = xjjf2 + uj, and

ij
o? pPO102
VINN(Oyz( 1 5 >>
PO102 gy

@ We consider three models

M1 Independent random-effects model where p = 0
M2 Random-effects model with a saturated variance-covariance matrix

M3 Shared random-effects models where u; = dw; for some constant ¢
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ex. Rheumatoid arthritis - ra(pagel80).csv

The Rheumatoid Arthritis Patients rePort Onset Re-activation sTudy (RAPPORT
study) : longitudinal study that aims to identify an increase in disease activity by
self-reported questionnaires.

Self-reported questionnaires are provided for patients every 3 months together with
clinical evaluations of patients’ disease status.

HAQ and RADAI were used for patients to self-report their functional status.

A clinical examination was recorded using the DAS28, which is a composite score
that includes for example the swollen joints counts. The DAS28 score varies between
0 and 10.

There are 159 patients and 5 visits for each patients.

Not all patients gave information for each k-th response and not all patients were
measured at each of the 5 visits.

HAQ : Health assessment questionnaires (20 questions from 8 categories)
RADAI : Rheumatoid arthritis disease activity index (5 items)

DASZ28 : Disease activity score with 28 joint counts
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. Rheumatoid arthritis - ra(pagel80).csv

yl : DAS28

y2 : 1(HAQ > 0.5), 0(HAQ < 0.5)

y3 : 1(RADAI > 2.2), 0(RADAI < 2.2)
time : month of measurement (0,3,6,9,12)
age : age at the baseline

sex : 1(female), O(male)

subject : 159 patients
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ex. Rheumatoid arthritis - ra(pagel80).csv

Multivariate model with 3 responses

o yij = (1, y2ij, y3i)" : response from j-th visits of the j-th (patients i =1,2,...,159
and j=1,2,...,5)

o X : designed matrix for k-th response

@ As covariates we use the intercept, time, age, and sex.

Figure: Path diagram for the MDHGLM fitted to the rheumatoid arthritis data
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ex. Rheumatoid arthritis - ra(pagel80).csv

@ We consider the following multivariate model with three responses.

yiij|viti, vizi ~ N(X181 + va1i + vaoi - time, ¢)
exp(X2;if2 + va1i)
1+ exp(X2jB2 + vo1i)

exp(Xz;83 + vs1i)
1+ exp(X3i83 + va1i)

Yaii|va1; ~ Bernoulli (

y3ij|va1i ~ Bernoulli <

@ The model for DAS28 includes a random intercept and slope, while HAQ and
RADAI have only random intercepts.

@ We assume a 4-dimensional latent structure :

* * *
Viii 0 A pl)‘11,12 /’2)‘11,21 p3)‘11,31
* * *
vizi | MVN 0 P1AD 11 A12 Parlo 01 P5ATD 31
Vaii 0 p2)‘§1,11 /’4)‘§1,12 A21 pﬁ)‘;l,31
V31i 0 P3N 11 PSAS1 1 PEAG A3l
where A7 ) = \/AjAu.
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

o National merit twins data including extensive questionnaires from 839 adolescent
twins, who took the national merit scholarship qualifying test (NMSQT) in 1962
among the roughly 600,000 US high school juniors (Loehlin and Nichols, 1976).

o They were diagnosed as identical (509 pairs) or same-sex fraternal (330 pairs) by a
brief mail questionnaire.

o Later, they completed a 1082-item questionnaire covering a variety of behaviors,
attitudes, personality, life experiences, health, vocational preferences, etc., plus the
480-item California psychological inventory.

@ Twins' scores on the NMSQT and their five subscales are also included.

o The 285-item questionnaire filled out by the parent was mainly focused on the life

histories and experiences of the twins.
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

pairnum : 768 pairs

y1, y2, y3, y4 : NMSQT scores recorded within 0-100. English(y1), mathematics(yz),
social science(ys) and natural science(ya)

variables code definition

Gender X1 1(male), 2(female)

Mother's X2 1(<8th grade), 2(part high school),

educational level 3(high school grad), 4(part college),
5(college grad), 6(graduate degree)

Father's X3 1(<8th grade), 2(part high school),

educational level 3(high school grad), 4(part college),
5(college grad), 6(graduate degree)

Family xa  1(<$5000), 2($5000 to $7500)

income level 3($7500 to $10000), 4($10000 to $15000)
5($15000 to $20000), 6($20000 to $25000)
7(>$25000)

Zygosity x5 O(identical), 1(fraternal)
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

Covariates

English
1

Gender(x;)
Mother’s educatioanl level(x;)
Father’s educational level(x3)
Family income level(x,)
Zygosity(xs)

Mathematics
b (o

Social Science
y3

Natural Science
Ya

260

Figure: Path diagram for the MDHGLM fitted to the NMSQT for twins data
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

Multivariate HGLM

@ We consider a multivariate HGLM with 4 response variables for the j-th person of

the i-th twin. For k =1,2,3,4,
Yiij| Vi ~ N(XUB/((H) + Vii, Drij)

where random effects follow multivariate normal distribution

r 0 ALi p1ATi2i  P2Aiai
; 0 A3 1i A2i A3izi
Vo ~ MVN , pP1 i,l 2* PaA2; 3
Vv3i 0 P31 PaN3 i Asj
Vaj 0 P3Nkiti  PsAkigi PeALii

P3/\Ti,4i

P5 )\;i,4i

P6/\§i,4i
Asi

jf-’k,- = /Ajidk and A\ = exp(ﬁ,((é)) is the variance of random effects.

o To allow heterogeneity between type of zygosity, we consider the model for residual

variance
log ¢uy = Big + Bis xsi
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

@ Random effects of social science and natural science scores show the strongest
correlation, 0.738. Correlation between English and mathematics scores has the
lowest value, 0.622.

@ For gender effect, mean have higher significant scores on mathematics, social science
and natural science, but women have higher significant scores on English.

@ Mother's educational level is not significant at almost all subject’s scores. But
father's educational level 4 and 6 are significant.

o Family's income level 5 has a significant positive effect and it has the highest
estimate.

@ In dispersion models for residual variances, we see that fraternal twins have greater
heterogeneity than identical twins.
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv
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Figure 7.4 Normal probability plots for (a) yilv1, (b) y2lve, (c) yslvs, and (d)
yalvs under the multivariate HGLM on the national merit scholarship qualify-
ing test for twins data

@ We see that the normal probability plots are approximately linear in the absence of
outliers. Thus, the fitted model is satisfactory.
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Vascular cognitive impairment - cog(pagel88).csv

o Lee, Nelder and Pawitan (2017) considered the Vascular Cognitive Impairment (VCI)
data.

@ The VCI measurements are increased among stroke patients, because cognitive
function is declined due to stroke. However, through an early intervention based on
the VCI, the cognitive function can be improved.

@ The purpose of the study is to examine the effects of 10 demographic and 10 acute

neuroimaging variables on the cognitive function in the ischemic stroke patients.

y1l, y2, y3, y4 : the standardized VCI scores. Executive(y1), memory(y2),
visuoapatial(ys), and language(ys)
id : 372 patients
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Vascular cognitive impairment - cog(pagel88).csv

Variable Code Definition
Demographic variables
Age X1 integer of age/10
Gender X2 1(male), O(female)
Edu X3 0O(none), 1(elementary), 2(middle), 3(high), 4(over college)
HTN X4 1(hypertension), 0(none)
DM X5 1(diabetes mellitus), O(none)
Af Xp 1(atrial fibrillation), O(none)
HxStroke X7 1(history of stroke), 0(none)
NIHSS Xxg national institute of health stroke scale score at admission
VCINP X9 time interval from stroke onset to first K-VCIHS-NP
PCl X10 1(IQCODE > 3.6), O(otherwise)
Neuroimaging variables
Acuteleft X11 Left or bilateral involement
AcuteMulti X12 lesion multiplicity in acute DWI imaging
AcuteCS X13 cortical involvement of acute lesions
ChrCS X14 cortical involement of chronic territorial infarction
PVWM X15 Periventricular white matter lesions (PVWM). 0(PVWM 0,1), 1(PVWM 2,3)
SCWM X16 Subcortical white matter lesions (SCWM). 0(SCWM 0,1), 1(SCWM 2,3)
LAC X17 The presence of lacunes
CMB X18 The presence of cerebral microbleeds
Medial temporal lobe atrophy (MTA)
MTAL x1g 1(MTA 2), 0(not 2)
MTA2 Xx20 1(MTA 3,4), O(not 3,4)

159 / 282



Vascular cognitive impairment - cog(pagel88).csv

Demographic variables

Age(x,), Gender(x,), Edu(x3), HTN(x4),
DM(xs), Af (xg), HxStroke(x7), NIHSS(xg),
VCINP(xs), PCI(x 1)

Neuroimaging variables

IAcuteLeft(x;,), AcuteMulti(x, ), AcuteCS(x;3),
(ChrCS(x14),PVWM(x15), SCWM(x1¢), LAC(x17),
CMB(x15),MTA1(x15), MTA2(x2)

Language Domain
Vs

Figure: Path diagram for the MDHGLM fitted to the VCI data
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Vascular cognitive impairment - cog(pagel88).csv

Multivariate HGLM

@ Consider a multivariate HGLM for four response variables for the t-th visit of the
i-th patient. For k =1,2,3,4,

Vit | Vii ~ N(Xit/B/((H) + Vii, Drit)

where Xj: are covariates, ¢uir = exp(,B,(:g)) is the residual variance.

@ The random effects follow a multivariate normal distribution :

* * *
Vi 0 Ai P12 P2ALisi P34
Voi 0 S s Moi A5 o 5
2i ~ MVN P1 il,ll i’ P4 2i,3i P5 i1,4l ,
v3i 0 p2)‘3i,1i 04)\3.',2; Azi P6/\3i,4i
* * *
Vai 0 P3Xai1i PsALioi PeAi i Asj

where Afhki = /Ajidk and A = exp(ﬁ,((é)) is the variance of random effects.
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Vascular cognitive impairment - cog(pagel88).csv
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Figure 7.6 Normal probability plots for (a) yilv1, (b) yz|vz, () ys|vs, and ()
alva under the multivariate HGLM on the vascular cognitive impairment data.

o We see many large outliers.
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Vascular cognitive impairment - cog(pagel88).csv

MDHGLM1

@ We consider a multivariate DHGLM (called MDHGLM1) that allows a heavy-tailed
distribution for yxie|vii (k =1,2,3,4) as follows. For k =1,2,3,4,

log grir = Bko +Vk: )

where V,S25 ~ N(0, o) and Ay = exp(,BkO))
MDHGLM2

@ We further consider a MDHGLM (called MDHGLM?2) also allowing heavy-tailed
distribution for vy; as follows. For k = 1,2, 3,4,

log duie = (¢) + VIE¢)

()+Vﬁ,)7

log Axi

where V;S ~ N(0, ak) and vk ~ N(0, 7%).
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Vascular cognitive impairment - cog(pagel88).csv
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Vascular cognitive

impairment - cog(pagel88).csv
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Figure 7.9 Normal probability plots for (a) v1, (b) vz, (c) vs, and (d) vs under Figure7.10 Normal probability plots for (a) vy, (b) vz, (¢) vs, and (d) vs under
the MDHGLM!1 on the vascular coanitive impairment data. the MDHGLM2 on the vascular cognitive impairment data.
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Vascular cognitive impairment - cog(pagel88).csv

@ cAIC selects MDHGLM2 (cAIC=10437.4) as the best-fitting model among 3
models, because cAlC for the multivariate HGLM (cAlC=13260.0) and MDHGLM1
(cAlC=10548.1) are larger.

@ Wee see that most outliers in the multivariate HGLMs disappear by using
MDHGLM1 or MDHGLM2.

@ From the normal probability plots for v,ﬁ?), MDHGLM?2 is prefered to the
MDHGLM1 because \“/,E,.A) leans more toward the line.

@ Thus, we select the MDHGLM2 as the final model, which gives robust estimators
against outliers as well as robustness against misspecification of distributional

assumptions on random effects.
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

o Longitudinal data set from mother’s stress and children’s morbidity study (MSCM)
(Asar and llk, 2014).

@ In this MSCM study, 167 mothers and their preschool children were enrolled for 28
days.

@ Investigation of the serial dependence structures of the 2 longitudinal responses
suggested a weak correlation structure for the period of days 1~16. Therefore, only
the period of days 17 ~ 28 is considered in this dataset.

@ 167 x 12 = 2004 observations are in dataset.
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

stress = y1 : mother’s stress. 1(presence), O(absence)

iliness = y> : children’s illness. 1(presence), 0(absence)

married : marriage status. 1(married), O(other)

education : highest education level. 1(> high school), 0(< high school)
employed : employment status. 1(employed), 0(unemployed)

race : race. 1(non-white), O(white)

csex : gender of children. 1(female), O(male)

chlth : health statuses of children at baseline. 3(very good), 2(good), 1(fair),
0(poor/very poor)

mhlth : health statuses of mothers at baseline. 3(very good), 2(good), 1(fair),
0(poor/very poor)

housize : household size. 1(more than 3 people), 0(2-3 people)
bstress : rhe average stress values of the 1~16 days
billness : rhe average illness values of the 1~16 days

week : study time. week = (day-22)/7
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

married
education Mother's stress
employed status (stress)
race V1
csex
chith
mhith

housize Childern’sillness
bstress Status (illness)
billness Y2

week

Figure: Path diagram for the MDHGLM fitted to the mother's stress and children’'s morbidity data
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

Bivariate Bernoulli HGLM

¥i = (v1i5, y2i7)T : bivariate binary responses for the j-th visit of the i-th family
v,(“) = (w,(“), u}"))T : unobserved random effects for the i-th family
y1,-j|v,.(”) ~ Bernoulli(p1j), y2,-j|v,(“) ~ Bernoulli(p2j)

P1jj (1) (k) P2ij _ (k) (1)
lo — | = X5, + w;m, lo — ) = X;5" + u;
g<1—p1,'j) vt g(l—ng) 2

A1i PV ALiA2i
p VAL Aai

Thus, given v,(”), y1ij and y»;; are independent.

i

where v\*) ~ N(0, ;) with &; = ( ) and —1<p<1.

We first consider three models with log A1; = [3%) and log \2j = éé‘).

M1 Independent model, having p =0
M2 Random-effect model with a saturated variance-covariance matrix
M3 Shared random-effects model, having ult = 6w,-(“) for some constant §

i
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

@ The cAIC has values of 2653.7 (M1), 2428.9 (M2), and 2517.3 (M3).

@ Thus, cAlC selects the full model M2 among 3 models.

Robust bivariate DHGLM
@ In binary data, GLMMs are sensitive to a distributional assumption of random
effects, which is difficult to identify.
@ Thus, we consider the robust bivariate DHGLM by allowing random effects in the

variance for random effects.

M4 the same as M2, but having log A\1; = 5&3) + W,.(’\) and log \2; = ﬂ%) + uf’\)
where w,.()‘) ~ N(0, 71) and qu) ~ N(0, 7).

@ The cAIC has value of 2103.9 for M4. Thus, cAlC selects M4 as the best-fitting

model.
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ex. Primary biliary cirrhosis - pbc(page206).csv

o Longitudinal data set in the R package JM (Komarek, 2015) from a Mayo Clinic trial
on 312 patients with primary biliary cirrhosis (PBC) conducted in 1974-1984.

@ There are 1 to 5 visets per subject performed at time of months. At each visit,
measurements of 3 response variables are observed.

o Komarek (2015) used 260 subjects known to be alive at 910 days of follow-up, and
only the longitudinal measurements by this point will be considered.
subject : 260 subjects
day : time of day = monthx30.4375
month = x : time of month
Ibili = y1 : continuous logarithmic bilirubin
platelet = y» : discrete platelet count

spiders = y3 : dichotomous indication of blood bessel malformations
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ex. Primary biliary cirrhosis - pbc(page206).csv

Log of bilirubin /@«
L §
Month Platelet
b -«
Spiders
2
S8l

Figure: Path diagram for the MDHGLM fitted to the PBC data
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ex. Primary biliary cirrhosis - pbc(page206).csv

Multivariate model for 3 responses

@ We consider a multivariate model for three response variables with a covariate x;: for
the tth visit of the ith patient.

yiie|vii ~ N(Nlity ®1i)

with g = B + 8% + v and log g1 = B + B9 x;
Yoit|voi ~ N(M2it7 ®2i)

with g = B + B8 xie + Vi) and log ¢oi = B3 + B xie
yit|vai ~ Bernoulli(pg,-t)

with Iog<1 p32 ) ) 4 B i + Vi)
- P3it

where the random effects follow multivariate normal distribution :

Vﬁt) 0 A1 PIAT L P2A[ 5
AL ~MYN [ (o], [erss X psrss with AT = /A
Vg#) 0 P2A1 P35 A3
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ex. Primary biliary cirrhosis - pbc(page206).csv

Residuals vs. Fitted Residuals vs. Fitted

Residuals vs. Fitted Residuals vs. Fitted
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Theoretical Quantiies Student Residual

Figure 7.13 Model checking plots for multivariate HGLM of yy on the primary
biliary cirrhosis data.

Theoretical Quanties Student Residual

Figure 7.14 Model checking plots for multivariate DHGLM of ya on the pri-
mary biliary cirrhosis data.

@ Under the multivariate HGLM, we see that many large outliers exist.
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ex. Primary biliary cirrhosis - pbc(page206).csv

Multivariate DHGLM allowing heavy-tailed distributions for y; and y»

log 1 = 8L + B + vi?) with v{?) ~ N(0, 1)
log ¢ = B + B xie + Vi) with vi?) ~ N(0, a)

@ cAIC shows that DHGLM (cAlC=13068.1) is better fit than HGLM (cAlIC=19776.5).

@ We can see that most outliers in multivariate HGLM disappear allowing heavy-tailed
distribution for y; and y».

@ Thus, we select DHGLM which gives robust estimators against outliers.
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ex. Missing data mechanism - sch_2(page209).csv

Review : DHGLM with ignorable missingness

@ In Chapter 6, we analyzed the schizophrenic behavior data from an eye-tracking
experiment with a visual target moving back and forth along a horizontal line on a
screen (Rubin and Wu, 1997).

@ We assume that the missing data are missing at random (MAR).

@ We proposed using a DHGLM with

= BY + xuBH) + i B + 684 + schifY” + schi - x1BY)
+ schi - B8 + v + ¢

where v ~ N(0, \) is the subject random effect, and e; ~ N(0, ¢).

log(¢i) = B + schiB?) + schiv(®)

(#)

where v;*” ~ N(0, 7) are the dispersion random effects.

@ We call this model DI (DHGLM with ignorable missingness).
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ex. Missing data mechanism - sch_2(page209).csv

DN : DHGLM with non-ignorable missingness

@ According to the physicians, missingness could be caused by eye blinks which are
related to eye movements (responses) (Goossens and Opstal, 2000).

@ This leads to the following model for missing data.

@ 0j = y»j; : indicator variables. 1(missing), 0(otherwise)

n= ¢71(p,-j) = o + X1,'j(51 + X2,'j(52 + sex;03 + schijds + sex; - X1,'j(55
+ sex; - X2,'j56 -+ sex; - schi;jd7 + py,-}‘
where p;j = P(§; = 1).

@ We can consider the model DI as well as DN with the probit model having two

responses : y; for a continuous response and y» for a missing indicator.

DI DHGLM with ignorable missingness where p = 0
DN DHGLM with non-ignorable missingness where p # 0
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ex. Missing data mechanism - sch_2(page209).csv

@ The negative value of j supports the physicians’ opinions that lower values of the
response are more likely to be missing at each cycle.

@ However, the conclusions concerning non-ignorable missingness depend crucially on
untestable distributional assumptions. Thus, sensitivity analysis has been
recommended.

@ Fortunately, the analysis of the responses in there data indicates that they are not
sensitive to the assumptions about the heavy tails or the missing mechanism (Yun
and Lee, 2006).
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ex. Law school admission - factor(page215).csv

@ Lee, Nelder, and Pawitan (2017) considered law school admission data of Bock and
Lieberman (1970), consisting of 6 items for law school admission test with 350
subjects.

y1 ~ ys : items for law school admission test. 1(correct), O(not correct)

subject, x : 350 subjects

(%] [&] [&

‘ ¥z ‘ V3

Figure: Path diagram for the binary 2-factor model
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ex. Law school admission - factor(page215).csv

Binary 2-factor model
o mj = P(y; = 1|vi)

@ Consider a binary 2-factor model.
logit(m;) = By + Av;

where 7; = (71, -+ ,mis)" and By = (Bo1,- -, Pos)". Respectively,
ar_ (1 % X 0 0 0
0 0 0 1 X X

and Vi = (V,'l, V,'2)T ~ BVN (0, (711 712)).
Y21 Y22
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ex. Law school admission - factor(page215).csv

1-factor model

@ We also consider 1 factor model, which is equivalent to assume the correlation
between vi; and v»; being +1.

logit(m;) = By + Awy;
where
AN=(1 X X M X5 A)

and Wy ~ N(O,’yu).

o 1-factor model has cAIC = 2371.7 which is less than 2-factor model (cAIC =
2548.6). Thus, cAlCs clearly prefers the 1-factor model.
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Chapter 8. Survival Analysis

@ In this chapter we study the analysis of incomplete data, caused by censoring in

event-time survival data.
@ Cox’s proportional hazards model is widely used for the analysis of survival data.

@ Frailty models with a non-parametric baseline hazard extend proportional hazards
model by allowing random effects in hazards and have been widely adopted for the
analysis of survival data (Hougaard, 2000; Duchateau and Janssen, 2008).

@ Using h-likelihood theory we can show tha Poisson HGLM algorithms can be used to
fit these models.

@ Ha, Lee, and Song (2001) showed that with the h-likelihood it is easy to eliminate
nuisance parameters by using a plug-in method and a fast estimation algorithm can
thereby be used.

o Either a log-normal or gamma distribution can be used as the frailty distribution.

Therefore, normal and log-gamma distribution can be adopted for the log frailties.
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Frailty models

o Data is consist of right censored observations from g subjects, with n; observations
each (i=1,---,q).

e n=).n;: total sample size

@ Tj : survival time for the j-th observation of the i-th subject (j =1,--- n;).

@ Cj : corresponding censoring time

o yj = min{Ty, G}, 0 =I(T; < G)

@ u; : unobserved frailty for the i-th subject

@ The conditional hazard function of Tj is of the form
i (t|ui) = o(t) exp(x] B)u

where Xo(+) is an unspecified baseline hazard function and 8 = (51,--- ,8p)" is a

vector of regression parameters for the fixed covariates x;.

@ Here, the term x] 3 doesn’t include an intercept term because of identifiability.
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Frailty models

@ We assume that the frailties u; are i.i.d. random variables with a frailty parameter a.
@ We can assume gamma and log-normal distributions for u;.
(i) gamma frailty with E(u;) = 1 and var(u;) = «
(ii) log-normal frailty having v; = log u; ~ N(0, &)
Multi-component frailty models
o X : n x p model matrix
0 ZW : px gr model matrices correspong to the frailties v

o v v are independent for r # /
X8+ PP ON IR (ON O

o Z) has indicator values such that Zs(t') = 1 if observation s is a member of subject t
in the r-th frailty component, and 0 otherwise.
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ex. Kidney infection - kidney(page224).csv

o Data from study on the recurrence of infections in kidney patients who are using a
portable dialysis machine (McGilchrist and Aisbett, 1991).

@ Times until the 1st and 2nd recurrences of kidney infection in 38 patients are
recorded.
@ The catheter is later removed if infection occurs and can be removed for other
reasons, which we regard as censoring (about 24%).
id : 38 patients
time : time until infection since the insertion of the catheter
status : censoring indicator. 1(infection), O(censoring)
age : age of patient
sex : 1(male), 2(female)
disease : disease types. GN, AN, PKD, other
frail : estimated frailty (McGilchrist and Aisbett, 1991)
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ex. Kidney infection - kidney(page224).csv

Frailty model with 2 covariates
o We fit frailty models with 2 covariates, the sex and age.

@ The survival times for the same patient are likely to be correlated because of a shared
frailty describing the common patient’s effect. So we consider patient as the frailty.

@ The standard shared frailty model assumes that censoring times are independent of

event times within clusters.

o For further discussions in survival analysis, see Ha, Jeong, and Lee (2017).
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ex. Rat - rats(page228).csv

o Dataset is based on a tumorigenesis study of 50 litters of female rats (Mantel et al.,
1977).

@ For each litter, 1 rat was selected to receive the drug and the other 2 rats were
placebo-treated controls.

@ Death before occurrence of tumor yields a right-censored observation. 40 rats
developed a tumor, leading to censoring of about 73%.

@ The survival times for rats in a given litter may be correlated due to a random effect
representing shared genetic or environmental effects.
litter : 50 litters
rx : 1(drug), O(placebo)
time : time to development of tumor or death (weeks)

status : censoring indicator. 1(occurence), 0(death, censored)
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ex. Rat - rats(page228).csv

Log-normal frailty model

We fit models with 1 covariate, the rx. Also, we consider litter as the frailty.
From the results, the rx group has significantly higher risk than the control group.
The variance estimate of the frailty is & = 0.4272 (SE=0.4232).

Although we report the SE of the «, one should not use it for testing the absence of
frailty @ = 0 (Vaida and Xu, 2000).

A null hypothesis is on the boundary of the parameter space, so that the critical
value of an asymptotic (x*(0) + x?(1))/2 distribution is 2.71 at 5% significant level
(Lee, Nelder, and Pawitan, 2017; Ha, Su;vester. Legrand, and MacKenzie, 2011).

The difference in deviance —2pg3,.,(h,) between Cox's PHM without frailty (364.15)
and log-normal frailty model (362.56) is 1.59(< 2.71), indicating that the frailty
effect is non-significant.
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ex. Rat - rats(page228).csv

@ For the selection of a model between non-nested models, we may use 3 AIC criteria
(Lee, Nelder, and Pawitan, 2017; Ha, Lee, and MacKenzie, 2007; Donohue,
Overholser, Xu, and Vaida, 2011).

cAIC = — 2hg + 2df.
mAIC = —2p,(hy) + 2df,,
rAIC = — 2pg ,(hp) + 2df,

where ho = £ .

o df. = trace{D™*(hp, (8,v))D(ho, (B,v))} is an effective degrees of freedom
adjustment for estimating the fixed and random effects. It is computed by using the
Hessian matrices D(h,, (8,v)) = —8%h,/0(8,v)?, D(ho, (8,v)) = —0%ho/d(B,v)>.

o df,, is the number of fixed parameters.

o df, is the number of dispersion parameters (Ha et al., 2007).
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ex. CGD infection - cgd(page230).csv

@ Dataset consists of a placebo-controlled randomized trial of gamma interferon
(rIFN-g) in the treatment of chronic granulomatous disease (CGD) (Fleming and
Harrington, 1991).

@ 128 patients from 13 centers were tracker for around 1 year.
@ The survival times are the recurrent infection times of each patient.

@ Censoring occurred at the last observation for all patients, except one, who
experienced a serious infection on the date he left the study.

@ About 63% of the data were censored.

@ The recurrent infection times for a given patient are likely to be correlated. Also,
each patient belongs to the 1 of the 13 centers.

@ The correlation may be attributed to patient effect and center effect.
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ex. CGD infection - cgd(page230).csv

tstart - tstop : recurrent infection times of each patient or censoring time
id : 128 patients

center : 13 centers

treat : rIFN-g or placebo

status : censoring indicator. 1(infection observed), 0(censored)
random : data of randomization

sex, age, height, weight : information about patients at study entry
inherit : pattern of inheritance

steroids : use of steroids at study entry. 1(yes), 0(no)

propylac : use of propylac antibiotics at study entry. 1(yes), 0(no)
hos.cat : categorization of the centers into 4 groups

enum : observation number within subject
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ex. CGD infection - cgd(page230).csv

Multilevel log-normal frailty model

o We fit a multilevel log-normal frailty with 2 frailties and a single covariate,
treatment. Here, the 2 frailties are random center and patient effects.

XB + 7®,® + 7@,
V(l) ~ N(Ov allth)
V(2) ~ N(Ov a2lq2)

1)

where v(¥) is center frailty, and v® is patient frailty.

@ For testing the need for a random component (a1 = 0 or ax = 0), we use the
deviance —2pg..,(hp), and fit the following 4 models.
M1 Cox’s model without frailty (cq =0, ao = 0) : —2pg,(hp) = 707.48
M2 model without patient effect (aq > 0, a2 = 0) : —2pg,,(hp) = 703.66
M3 model without center effect (aq =0, a2 > 0) : —2pg,.(hp) = 692.99
M4 multilevel model (a1 > 0, a2 > 0) : —2pg,.,(h,) = 692.95
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ex. CGD infection - cgd(page230).csv

@ The deviance difference between M3 and M4 (0.04 < 2.71 = x2 15(1)) indicates the
absence of the random center effects.

@ The deviance difference between M2 and M4 (10.71) indicates the necessity of
random patient effects.
@ The deviance difference between M1 and M3 (14.49) indicates the becessity of

random patient effect even without random center effects.

o cAIC, mAIC and rAIC also choose M3 among the M1 - M4.
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ex. Bladder cancer - bladder(page232).csv

@ Therneau and Lumley (2015) reported data on recurrences of bladder cancer, which

were used to demonstrate methodology for recurrent event modeling (Wei et al.,
1989).

o 85 patients were assigned to either thiotepa or placebo, and reports up to 4
recurrences for any patients.
start : start of interval (O or previous recurrence time) (month)
stop : tumor recurrence or censoring time (month)
event : censoring indicator. 1(recurrence), O(otherwise)
id : 85 patients
rx : treatment. 1(placebo), 2(thiotepa)
number : initial number of tumours. (8=8 or more)
size : size of largest initial tumor (cm)

enum : observation number within subject
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ex. Bladder cancer - bladder(page232).csv

Log-normal frailty models

@ We fit log-normal frailty models with 3 covariates, the rx, the number, and the size
using HL(1,1).

@ The thiotepa treatment has a marginally significant lower recurrent risk than in the
placebo group controlling initial number of tumors.

@ The deviance difference between Cox's PHM (1029.4) and log-normal frailty model
(1024.1) is 5.3(> 2.71), indicating that the frailty effect is significant (p=0.011).

Gamma frailty model

@ The results from gamma frailty model using HL(1,2) are slightly different to those of
log-normal frailty, particularly for estimation of .

@ AIC indicates that log-normal and gamma frailty models are better than Cox's PHM.

@ Between log-normal and gamma frailty models, AlCs indicate that the log-normal
frailty model is better than the gamma frailty model.
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Grouped duration model

@ T; : duration time until occurence of event for the i-th individual

o T; is not observed exactly, but we have information that the event happened in a
specific interval.

The durations are observed at the t-th time point a; (t =1,--- ,r) with the ap = 0.

d { 1 i-th individual experienced event during the t-th time interval
it =
0 ow

o We considered the binary variable di; as the response variable with the corresponding
xi¢ observed at the (t — 1)-th time point a;—1.

(Starting point)
. a =0 a; az Ar_y a
Time
at observation [ ¥ ¥ f )
Response i di dyy
Covariate X Xip Xir

Figure: Structure of grouped duration data
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Grouped duration model

@ Given the random effect v;, the conditional hazard rate at time T; = u for
a1 <u<arwitht=1,---,r of the form

Aulvi) = Xo(u) exp(x; B+ vi)

@ M\o(+) : baseline hazard function

@ [ : regression coefficients of covariates of interests

@ x; : risk factors observed over multiple time points (t =1,---,r)
@ v; : frailties of individuals

@ Ha, Jeong, and Lee (2017) showed that the responses dj: follow the Bernoulli HGLM
with the complementary log-log link

log(—log(1 — pit)) = v« + xii B+ vi

where piy = Pr(di: = 1|v;) and ~: = log f::_l Ao(u)du.
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ex. Smoke onset - SmokeOnset.csv

o For 1556 students in the Los Angels area, onset of smoking is oberved at each of 3

timepoints ai, a2, and as.
@ a; : starting time for investigation
@ ay : l-year follow-up and asz : 2-year follow-up
@ These event times are grouped at the 3 intervals [0, a1), [a1, a2), [22, a3).
@ For each student, we generate the following 4 responses.
(i) dii =1 if he/she started smoking at intervals at [0, a;)
(smkonset = 1)
(ii) (dn,d2) = (0,1) if he/she started smoking at intervals at [a1, a2)
(smkonset = 2)
(i) (di, di2, dis) = (0,0, 1) if he/she started smoking at intervals at [ay, a3)
(smkonset = 3)
(iv) (di,di2,diz) = (0,0,0) if he/she had not smoked until as (censored)
(smkonset = 3)
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ex. Smoke onset - SmokeOnset.csv

school, class, student : 28 school, 134 class, 1556 students
smkonset : i-th time interval when the event occur

event : censoring indicator. 1(smoked), O(otherwise)

int : constant value 1

SexMale : gender of student. 1(male), O(female)

cc : indicating whether the school was randomized to a social-resistance classroom
curriculum. 1(yes), 0(no)

tv : indicating whether the school was randomized to a media (television) intervention.
1(yes), 0(no)

cctv : ccXtv
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ex. Smoke onset - SmokeOnset.csv

Grouped duration model
@ 3 covariates are considered SexMale, cc, tv.

@ Deviance diffence between Cox's PHM (40189.8) and log-normal frailty model
(40123.6) is 66.2(> 2.71), indicating the necessity of frailty.

@ From the output, male has higher risk for smoking than female.

@ Schools with cc or tv give lower risk for smoking to their students.
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Competing risk models

e Fori=1,---,q,j=1,---,n,and k=1,--- | K,
@ Tjy : time to type k for the j-th observation in the i-th cluster

o C; : independent censoring time

@ Observed event y; = min( Tj1, Ti2, -+, Tik, Cjj)
@ Event indicator i = I(y; = Tix)
@ The cause-specific hazard function conditional on the log-frailty v; = (vi1,--- , vik) is

Xk (tvi) = Aok (t) exp(x; Bic + vix)

where Aok(t) is the unspecified baseline hazard function for event type k.
® Bk = (B, -+ ,Bkp)" : fixed parameters for event type k
o x; : fixed covariates

@ v : random effect for type k event in cluster i
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Competing risk models

o Consider K = 2.

@ Event times from cause 1 and 2 would follow a cause-specific proportional hazards
model

Ain(t|vi) = Aor(t) exp(x} By + vi1)
Ai2(t|vi) = Aoa(t) exp(xj B2 + viz)

where vi1 and vi; might be correlated.

@ In the traditional cause-specific analysis, patients who failed from cause 2 are
treated as censored for the analysis of type 1 events, which ignores a potential

correlation between vj; and vi,.

o Competing risks data usually arise when an occurrence of a competing event

prevents the occurrence of the event of interest.

@ Treating the competing event as a censoring can lead to biased results (Pepe and
Mori, 1993).

203 /282



ex. Simulated data - simuldata(page240).csv

o We used a simulated data set generated in the R package crrSC (Zhou et al., 2012,
2015).

@ The data consists of a data frame with 200 observations.
ftime = time : event time

fstatus = status : event type. 1(event of interest, 112 observations), 2(competing event,
47 observations), 0(censoring, 41 observations)

x = z : binary covariate generated with probabilty of 0.5

Type 1 event
/

Entry
hN

ij2 Type 2 event

ID : 100 cluster with each cluster size 2

Figure: Path diagram for the competing risk frailty model
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ex. Simulated data - simuldata(page240).csv

Cause-specific hazard frailty model
o Consider the cause-specific hazard frailty model (Ha, Jeong, and Lee, 2017).

@ M\ : conditional hazard function for the j-th observation in the i-th cluster that
failed from cause k (given a shared log-frailty v;)

X (tvi) = Aar(t) exp(xj B1 + vi)
)\,‘j2(i‘|V,‘) = )\02(t) exp(x,-;rﬁz + 'yv,-)

where v; ~ N(0,0?)

o If v > 0[y < 0], a cluster with higher frailty in type 1 event will experience an eariler
[delayed] type 2 events (Huang and Wolfe, 2002).

@ v =1: the effect of the frailty is identical for both events.
@ 7 =0 : two event rates are not associated.

@ The estimate of shared parameter 4 = —1.218 shows a negative association between

2 events.
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H-likelihood theory for the frailty model

The h-likelihood gives a straightforward way of handling non-parametric baseline hazards.
The h-likelihood is defined by

h=h(B; X0, @) = lo+ &1
bo =, log f(yy, 8jlui; B, Xo) = 3, d{log No(yis) + ms} — 2, Mo(vi) exp(1mi)
b=, log f(vi; a).
b= Z log ({S(YU)}I_‘SU{f(yU)}é,-j)
;

=D 1o (exp(~AL) )} )

y

=) {=Alg) + 65 log A(yy)}

y

= Z —No(yy) exp(ny) + Z dii{log Ao (yi) + mij}

i i
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H-likelihood theory for the frailty model

@ The functional form of Ao(t) is unknown. Hence, we consider Ag(t) to be a step function
with jumps at the observed event time (Breslow, 1972).

where where y(, is the k-th smallest distinct event time among the yj's, and
Aok = Ao(Y(k))-

@ Ha, Lee and Song(2001) proposed the use of the profile h-likelihood with ¢ eliminated,
r* .= h|)\0:/)\\0, given by

r*=r*(B8,a) =Ly + 41

where £§ = Zu log f*(y,-j,6,-j\u,-;ﬁ,/)\\o) does not depend on ). And

O S “
0k\Ps -
(i) € Rk exp(15)

are solutions of the estimating equations, Oh/9Aox = 0. d(k) is the number of events at y(y)
and Ry = {(/,J) : ¥ij > Yy} is the risk set at y(.
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H-likelihood theory for the frailty model

@ Therneau and Grambsch (2000) and Ripatti and Palmgren (2000) proposed h-likelihood,
called penalized partial likelihood (PPL) hyp.

ho(Bov,a) =Y oy — > duylogq Y exp(ng) o+
i k

7€Rw

@ Ha, Lee, and Song (2001) and Ha et al. (2010) have shown that r* is proportional to the

PPL hyp.
r = Z d(k) log Aok + Z dijmij — Z diy + 4
k ij k
=hp + Z d(ky{log d(xy — 1}
k
where Zk d(k){log diy — 1} is a constant which does not depend upon unknown

parameters.

@ Thus, the h-likelihood procedure for HGLMS of Lee and Nelder (1996, 2001) can be
extended to frailty models based on h, (Ha et al., 2010).
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Estimator of baseline hazard function, Ao(t)

@ When there is no such random effects,

»(ho(t)) H/\o (Vi) exp(BT X)) | exp ZAo(y,)exp(ﬁm

Jj=1

o Let Ao; = A(y) (i=1,--, D) and Ao(y;) = Zymgy,- Xoi = 30 Ri(i))ai- Then,

D n
Lp(Xo1; Xo2; - -+, dop) = H)\Oi exp(B8" X)) exp | —Aoi Z Ri(y(iy) exp(B T X))

@ The maximum likelihood estimator of Ag; is given by

N 1
Noi = —
i 21 Rilvy) exp(8T X))
~ t n N,'
Rolt) = 2 L)

0 Do Rilu)exp(BT X))

where N;(t) counts the number of events in [0, t] for unit i and > Ni(t) = N(t).
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Estimator of baseline hazard function, Ao(t)

@ Note that

~ o SO dN(t)
) ex T x. — " X ty. i=1
jzzl:Ao(yJ)e (B X)) ;/0 I(y; > t)exp( XJ)Zle Ri(t) o0 (37 X))

= /oo dN(t)
0

Lo(Ro(1)) = [H Ao(y(i)) eXP(/BTX(i))] exp [— Z No(y)) exp(Bth)‘|

j=1

D oo
= [HAO(Y(i))eXP(BTX(i))] exp {—/ dN(t)
j 0

@ Then,
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Estimator of baseline hazard function, Ao(t)

@ Note that

to=">_{8;{log No(yy) + ms} — Nolyy) exp(ny)}

)

= Z d(x) log Mok + Z Simi — Z A(ok) Z exp(njj)
k ij k

() ER(Y(k))

~ d
@ Plugging in A\k(B,v) = Z = )
(eRyy T

& = Z s log Mok + Z Sijmij — Z k)
k i k
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Chapter 9. Joint Models

@ In this chapter, we consider data analysis for multivariate responses where at least
one response is time-to-event.

@ Separated analysis ignoring the inherent association between the outcomes from the
subject can lead to a biased result (Guo and Carlin, 2004).

@ Thus, joint modeling has been widely studied (Henderson et al. 2000; Ha et al.,
2003; Rizopoulos, 2012).

@ An unobserved random effect can be used to account for the association among

multivariate outcomes.

@ For the analysis of such dataset, the h-likelihood approach is very effective.
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ex. Serum creatinine - scr(page254).csv

o Dataset from the clinical study to investigate the chronic renal allograft dysfunction
in renal transplants (Sung et al., 1998).

@ The renal function is evaluated from the serum creatinine (sCr) values. Since the
time interval between the consecutive measurements differs from patient to patient,
we focus on the mean creatinine levels over 6 months.

@ A Graft-loss time is observed from each patient.

@ During the study period, there were 13 graft losses due to the kidney dysfunction.
For other remaining patients, we assumed that the censoring occurred at the last
follow-up time (about 88%).
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ex. Serum creatinine - scr(page254).csv

id : 112 patients

month : visiting time (month)

cr : serum creatinine value (mg/dL)

sex : gender. 1(male), O(female)

age : age of patients

icr : reciprocal of serum creatinine value = 1/cr
sur_time : graft-loss time (month)

status : censoring indicator. 1(occurrence), O(censoring)
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ex. Serum creatinine - scr(page254).csv

@ We are interested in investigating the effects of covariates over 2 response (sCr
values and a graft-loss time).

@ Ha et al. (2003) considered month, sex and age as covariates for sCr. Also they
considered sex and age as covariates for the loss time.

@ We consider the standard mixed linear model we use values 1/sCr as responses y;;.

Graft-loss time

T

Figure: Path diagram for the joint model for repeated measures and survival time
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ex. Serum creatinine - scr(page254).csv

Joint model

@ For the 1/sCr values, consider a linear mixed model
Yij = Xfijﬂ + vii + €

where xy; are covariates, vi; ~ N(0,0%), and e; ~ N(0, 02).

@ For graft-loss time t;, consider a frailty model with the conditional hazard function
)\(t,'|V1,') = Ao(t,‘) eXp(X2TI-($ =+ ’}/Vl,')
where Ao(t) is the baseline hazard function, x»; are between-subject covariates, and

v is the shared parameter.

@ Ha et al. (2003) considered a Weibull model for the baseline hazard function where
Xo(t) = 7t" "1 with a shape parameter 7.

@ Also, we can fit the non-parametric baseline hazard model.

@ The values of cAIC show that non-parametric baseline hazard model is preferred to

the Weibull baseline hazard model.

216 / 282



ex. Serum creatinine - scr(page254).csv

Separate model

@ We can fit 2 random effect models separately with LMM and following frailty model.
Vi = X{zB + vii + €
where xy; are covariates, vi; ~ N(0,0%), and e; ~ N(0, 02).
A(tilvai) = Xo(t) exp(xg;:0 + voi)

where vo; ~ N(0, 02,).
@ The cAlC can be computed by adding cAIC from two models.

@ We can see that joint models are preferred to corresponding separate models.
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ex. AIDS - aids(page257).csv

o Data were collected in a recent clinical trial to compare the efficacy and safety of 2
antiretroviral drugs in treating patients who had failed or were intolerant of
zidovudine (AZT) therapy (Rizopoulos, 2015).

@ 467 HIV-infected patients were enrolled and randomly assigned to receive either
didanosine (ddl) or zalcitabine (ddC).

@ The number of CD4 cells per mm? of blood were recirded at study entry, and again
at the 2, 6, 12, 18 month visits.

o Times to death were also recorded with a 40% censoring rate.
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ex. AIDS - aids(page257).csv

patient : 467 patients

time : the time to death of censoring

death : censoring indicator. 1(death), 0(censoring)
CD4 : the CD4 cells count

month : recorded time points

drug : ddC(zalcitabine), ddl(didanosine)

gender : male, female

prevOl : AIDS diagnosis at study entry

AZT : intolarance(AZT intolarance), failure(AZT failure)
start : start of time in the first interval

stop : end of time in the first interval

event : 1(death in the first interval), O(censoring)

y : CD4Y/?
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ex. AIDS - aids(page257).csv

@ Rizopoulos (2015) considered a joint model for the square root of CD4 value y;; for

the j-th visit and the time to death t; of the i-th patient.

@ We consider month and drug as covariates for y;;, and drug for t;.

Month

Drug

By
B2

Z

Square root of CD4 count
Y.

Death time

-
‘ Entry H Event l

Figure: Path diagram for the joint model for repeated measures and survival time on AIDS data
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ex. AIDS - aids(page257).csv

Joint model

@ For the response yj;, consider a linear mixed model.
Yij = Xfijﬂ + vii + €

where x];; are covariates, vi; ~ N(0,02;) and e; ~ N(0, 02).

@ For death time t;, condider a frailty model with the conditional hazard function
Ati[vii) = Ao(ti) exp(x5;0 + yvai)
where \o(t) is the baseline hazard function, xJ; are between-subject covariates and =

is the shared parameter.

o Rizopoulos (2015) considered a Weibull model for the baseline hazard function
where Xo(t;) = 7t" ! with a shape parameter 7.
@ We can also fit a non-parametric baseline hazard model.

@ The values of cAIC show that the Weibull baseline hazard model is preferred to the

non-parametric baseline hazard model.
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ex. AIDS - aids(page257).csv

Separate model

@ We can fit 2 random effect models separately with following frailty model.
Vi = X{zB + vii + €
where x];; are covariates, vi; ~ N(0,02;) and e; ~ N(0, 02).
A(ti]vai) = Xo(ti) exp(xg;:0 + voi)

where vo; ~ N(0, 02,).

@ We can see that joint models are preferred to corresponding separate models.
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

@ In chapter 7, we analyzed the PBC data available in the R package JM (Rizopoulos,

2015).

@ We fit joint model for the logarithm of serum bilirubin (mg/dL) y; for the j-th visit

and the time to event t; of the i-th event.
o We consider year, sex, and drug as covariates for yj;.

o We also consider sex and drug for t;.

i

Logarithm of serum bilirubin in mg/dl |\
y

Competing event time T
2
A Type 1 event
(Dead)
Entry
~
20 | Type 2 event
2 (Transplanted)

Figure 9.3 Path diagram for the joint model of repeated measure and competing
event time on PBC data.

1
//ﬁ

Figure: Path diagram for the joint model for repeated measures and competing event time on

PBC data
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

id : 312 patients

serBilir : serum bilirubin (mg/dL)

y serBilir'/?

years : number of years between registration and the earlier of death, transplantion, or
study analysis time

status : censoring indicator. 2(transplanted), 1(dead), O(alive)

year : number of years between enrollment and this visit date

drug : 1(D-penicillamine), 0(placebo)

sex : gender of patients. 1(male), O(female)
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

Variable Description

ascites Yes or No

hepatomegaly  Yes or No

spiders Yes or No

edema No edema, edema no diuretics, edema despite diuretics
serChol serum cholesterol (mg/dL)
albumin albumin (mg/dL)

alkaline alkaline phosphatase in

SGOT SGOT (U/ml)

platelets platelets per cubic ml / 1000
prothrombin prothrombin time (sec)

histologic histologic stage of disease
status2 1(death), O(transplanted or alive)
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

Joint Model

@ For yj;, consider a linear mixed model.
Vi = X8+ vi + &

where x]; are covariates, v; ~ N(0, o2) and e; ~ N(0, 02).

o For the time event t;, consider the cause-specific hazard frailty model for competing
risk.

o Given a shared log-frailty vi;, the conditional hazard function Ay for the i-th patient
that failed from cause k (k = 1,2) can be expressed as

Air(t|vi) = o1 (ti) exp(x3;01 + 71 vi)
Ai2(t|vi) = Xo2(ti) exp(x3;02 + Y2 vi)

where Aok(t) is an unspecified baseline hazard function for cause k, d is regression
parameters for cause k.
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

@ The estimates of shared parameters ;1 = 1.271 and 7> = 1.189 show a positive
associations between yj; and 2 events.

@ The visiting year effect for y;; is positively very significant.

@ The effect of drug is not significant for y; and for death event, but it is negatively
significant for trasplanted event.

@ The effect of sex is positively significant for y; and for death event, but it is not
significant for transplanted event.

o However, when we fit the competing risk model for t; removing response yj;, the
effect of drug is not significant for transplanted event.
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H-likelihood construction

yij : the jth repeated response of i-th subject (i=1,...,q,j=1,...,n;)
T; : a single event time of i-th subject
C; : the corresponding censoring time

We observe t7 = min(T;, ;) and §; = I(T; < G).
Linear Mixed Model for y :

— T
Yi =Xib+vi+ e

where v; ~ N(0, @) and € ~ N(0, ¢) are independent.
Frailty Model for T :

Ai(t|vi) = Ao(t) exp(xg;82 + yvi)

where )\ is an unspecified baseline hazard function and + is a real-valued association
parameter that allows the magnitude of the association to be different between two
outcomes, y; and T;.
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H-likelihood construction

@ The h-likelihood becomes
h=> ly+Y b+
i i i

where

by = Li(Br, ¢ yig|vi)
1 1
= — 5 log(2m¢) — %(}’ij —my)?
Ui = boi(B2, Ao; t, 67| vi)
= di(log Mo(t) + m21) — No(t") exp(n2i)
Ui = L3i(a; vi)r
2

1 1
==3 log(2ma) — 5 Vi

® mj = x{;B1 + vi and m2i = x3,82 + v; are linear predictors.
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Iterative least squares equations

@ Following Breslow (1972), we define the baseline cumulative hazard function Ag to

be a step function with jumps Ao, = Xo(t(;)) at the observed event times t,).

where t,) is the r-th smallest distinect event time (r =1,---, D).

@ The second term Z;Zﬂ of h becomes

Zfz = Z d; log Aor + Z Oimai — Z Aor {Z exp(m,-)}

i€Ry

where d; is the number of events at t,) and R, = {i : t > t(,)} is the risk set at t).
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Iterative least squares equations

@ Following Ha et al. (2001), we use the profile h-likelihood h™ :

Wo=hl 5= byt Gty L
i i i

where
= Yl 5= Y dlogho + Y- Y
~ ~ d,
Aor = Aor(B2, V) = =—————
' > icr, &P(121)
are the solution of the estimating equations BA =0forr=1,...,D.

@ The penalized partial h-likelihood h, is given by

hp = Zélij + Z Oimpi — Z d, log {Zexp(nzi)} + Zfsf
i i r i

i€Ry
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Iterative least squares equations

@ The score equations for fixed and random effects (31, 52, v) given dispersion

parameters ¥ = (¢, a, )"

Oh,
9p1
Oh,
9P
Oh,
v

are

= 1Xf(y—/M)
]

— XJ(6 - fia)

= Iz -z ) - L
o] a

where H1 = Xlﬁl + Ziv = M1, ﬁz = exp (|0g//§o(t*) + 772) with N2 = Xzﬁz + 'ngv.

@ /i is nx g group indicator matrix, and Z> = h which denotes a g x g identity matrix.

° No(t) = Zr:t(,)gt Aor is the estimator of cumulatize baseline hazard.
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Iterative least squares equations

@ This leads to the iterative least squares (ILS; see Ha et al. (2017)) joint equations
for 8 = (B8], B;5,v")T, given by

XTWhXa 0

XlT Wi Z, Xir Wiw,
0 XIWaXa  XJ(vWh)Zo o = [ XTw,
ZIWiXy ZI(yWa)Xe ZTWZ+Q/ |, Z'w oo
hyp &k, &2¢
where Wy = W =1 5 Wa = ananT' Q=550 = ola

wi =y, wo = Wam + (5 1i2), and

Zl W1 O * W1 wa
Z= , = , and w =
’)/ZQ O Wz wo

Note here that ZTWZ = ZlT WiLZ: + 221'(,.}/2 W2)Zz and ZTw* = ZIT Wiws + ’yZTW2
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Fitting procedure

@ The fitting procedure consists of the following two steps.

(S1) Estimation of fixed and random effects 6 = (3], 85, vT)T via the ILS equations.
(S2) Estimation of dispersion parameters ¢ = (¢, ,y)" as follows.
Estimation of ¥

o We used the adjusted profile h-likelihood, given by

~

1 1
polls) = [y = 5 logdet { - H(p ) ||

where § = 5(1/}) are solutions of % = 0 for given %, and

%h,

H(hP7 "/’) = 78980"‘

is observed information matrix for 6.
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Fitting procedure

@ The estimating equations of ¢ are given by

apg( P) =0
oY
leading to the estimating equations
R SN s
o v=m)y—m) g 5o VIV
n— Ko q— K1

where ko = f¢tr{H_1gZ}, K1 = —« tr{ﬁ_l%}, and H = H(h,,,0)|9 o)

@ The estimate of « is also easily implemented via the Newton-Raphson method using
the first and second derivatives.

@ This approach can extended to a joint model with competing-risk data (Ha et al.,
2017).
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Chapter 10. Further Topics: Variable Selection

Penalized least-square methods

o Many classical subset selection methods, such as forward/backward selection or
best-subset selection, cannot be easily adapted to applications where the number of

variables is much greater than the sample size.

@ PLS methods is another way to perform variable selection. The general version of

the PLS is the penalized likelihood criterion:
Qx(B) = U(B) — pA(B),

where £(8) = >"7 | log f5(yi|3) is log-likelihood and px() is penalty function.
@ We can in general put variable selection of any GLM-based regression model in this

framework.

236 /282



Penalized least-square methods

o Consider the regression model
y=xBte i=1,n 1)

where 3 is a p X 1 vector of fixed unknown parameters and ¢;'s are i.i.d. with (0, ¢).

@ Variable selection procedure can be described as PLS estimation that minimizes
1 n d
A B) =5 le(y,- —x7B)" + _Zlmom)
i= Jj=

where py(-) is a penalty function controlling model complexity.
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Penalized least-square methods

o With the Li-penalty, the PLS becomes LASSO:

P
A(8) =5 Z —xTBP+ A 18,

=t
which automatically sets to zero those predictors whit small estimated OLS
coefficients, thus performing simultaneous estimation and variable selection.

@ LASSO has been criticized on the ground that it typically selects too many variables
to prevent over-shrinkage of the regression coefficients (Radchenko and James,
2008); otherwise, regression coefficients of selected variables are often over-shrunken.

@ To improve LASSO, various other penalties have been proposed: SCAD penalty for
oracle estimators (Fan and Li, 2001), adaptive LASSO (Zou, 2006), elastic net (Zou
and Hastie, 2005).
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Penalized least-square methods

o With the L,-penalty, the PLS becomes ridge regression:
1 -

_ 1 Tt a)2 2

Qu(B) =5 i =B+ A 1B
i=1 j=1

@ In this case, all variables are kept in the model but the resulting estimates are the

shrunken versions of the OLS estimates.

o Ridge regression often ahcieves good prediction performance, but it cannot produce

a parsimonious model.

@ The ridge estimator is the same as random-effect estimator where §; are i.i.d.

normal random effects.
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Random effect variable selection

o We describe a random effect model that generates a family of penalties, including

the normal type, LASSO type and a new unbounded penalty at the origin.

@ In regression model (1), suppose 3 are random effects; conditional on uj, we have
Biluj ~ N(0, u;6), (2

where 6 is a fixed dispersion parameter and u;'s are i.i.d. random variables.

@ In this random effect model, sparseness or selection is achieved in a transparent way,
since u; =~ 0 implies 5; ~ 0.

o Since Au; = (af)(u;j/a) for any a > 0, § and u; are not separately identifiable. Thus,

we constrain E(u;) =1 as in HGLMs, which imposes a constraint on random effect
. P A
estimates such that ijl bj/p=1.
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Random effect variable selection

@ Assume that u; 's are from the gamma distribution with a parameter w such that

1 w—1 _—uj/w
fw(Uj):(l/W)l/Wriu-l/ teulv,

(1/w)~
having E(u;) =1 and Var(u;) = w.
@ Model (2) can be re-written as §; = ,/7;e; with ¢; ~ N(0,1) and

log 7 = logf + v;

where v; = log u;, which defines a DHGLM together with model (1).
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Random effect variable selection

@ Then h-loglihood h = h1 + h;y is given by

hy = Zlogqu(yllﬂ) **Iog 2r¢) — Z(yl

i=1
p

ha = {log fy(B|u) + log £u(v})},

l0g fo(u5) = 5 {108(2m6) + log vy + 57/ (0w},

log fu(vj) = — log(w)/w — log I'(1/w) + vj/w — exp(v;) /w.
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Random effect variable selection

The outline of the estimation scheme using IWLS as follows:

@ For given (8, w, ¢,0) solving dh/Ou = 0 gives the random effect estimator
. . 1
by = () = Z{8Wﬂjz/9 +-w)PP+(2-w)]. (3)

@ For given @I, Lee and Oh (2014) proposed to update 3 based on the model (1) with
3 satisfying (2). This is a purely random effect model

Y=XB8+e

where e ~ N(0, X = diag{¢}) and 3 ~ N(0, D = diag{d;0}).

@ From the mixed model equation, we update 3 by solving
(XTX 4+ Wy)B = XTy (4)

where Wy = diag{\/d;} and A = ¢/0.
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Random effect variable selection

o It is clear that 3; = 0 when & = 0. If we allow threshold by setting small i to zero,
then the corresponding weight 1/i; in W) is undefined.

@ We could exclude the corresponding predictors from (4), but instead we employ a
perturbed random effect estimate &5 x = A(|Bk| + 6)/|pA(|B«|)| for a small positive
8 = 1078 Then the weight is always defined and the solution is nearly identical to
the original IWLS as long as ¢ is small.

@ In random effect models, we used ML or REML estimates for (w, ¢, 0) and
computed tuning paramter X as the ratio ¢/6. On the other hand, in variable
selection, it is common to estimate A by using K-fold cross validation since X is not

a model parameter in PLS procedure.
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Implied penalty functions

o Given (w, ¢, 0), the estimator of 3 is obtained by maximizing the profile h-loglihood
hp = (b1 + h2)lu=a,

where @I solves dh/du = 0.

@ Since h; is the classical loglihood, the procedure corresponds to a penalized

loglihood with implied penalty

pr(B) = —dhalu=a,

where @i; is computed in the first step of the IWLS.

o Specifically, for fixed w, taking only terms that involve 3; and &, the j-th term of
the penalty function is

2
: —2
o) = g+ 5 ioga 4 oy )
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Implied penalty functions

@ Thus the random effect model leads to a family of potentially unbounded penalty
functions px(8) indexed by w:
(1) w — 0: ridge penalty (- &; — 1 if w — 0)
(2) w = 2: LASSO penalty (- & = |B;]/ V)
(3) w > 2: penalty with infinite value and derivative at 0

@ As the concavity near the origin increases, the sparsity of local solutions increases,
and as the slope becomes flat, the amount of shrinkage lessens.

@ From the next figure, we can see that HL controls the sparsity and shrinkage

amount by choosing the values of w and A simultaneously.
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Implied penalty functions

p(B)

p(B)

p(B)

P(B)

-4 -2 0 2 4 -4 -2 0
B
Figure 11.1 Penalty function px(8) at different values of w, for A =1 (solid),
A = 1.5 (dashed) and X = 0.5 (dotted). In general, larger values of A are
associated with larger penalties, hence more shrinkage and more sparseness.
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Implied penalty functions

@ By controlling the amount of sparsity and shrinkage simultaneously, the HL has
much higher chances of selecting the correct models without losing prediction
accuracy than the other methods (Kwon et al., 2017).

o Ng et al. (2006) showed the consistency of all local solutions of the HL method,
which implies the uniqueness of HL solution under certain conditions

o Ng et al. (2017) showed that HL estimator achieves consistent estimation of number
of change points, their locations, and their sizes, while LASSO and SCAD may not.

@ Advantage of the HL method is to achieve asymptotic selection consistency without

losing prediction accuracy in finite sample.
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Scalar § case

o Consider the simplest case that 3 is the population mean and z is the sample mean.

Here we can illustrate various variable selection procedures.

@ The IWLS step (4) gives

A z
B = TF /8 (6)
and the corresponding PLS criterion is
1
A(B) = 5(2—5)2"‘%(5)' (7)

@ The next figure shows the penalized likelihood surfaces at different values of z.
Given X as z approaches zero (when z < 2), there is only one maximum at zero, so
in this case the estimate is zero and the corresponding predictor is not selected.
Otherwise, bimodality occurs.
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Scalar 3 case

z=01

—log.profile.likelinod
—log.profile.likelinod

z=5 z=10
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Figure 11.2 Implied penalized log-likelihood functions equal to —Qx(B) in
(11.9) at different values of z and fived A = 1.
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Scalar § case

@ Note that the implied penalized likelihood Qx () is not convex but the model can
be expressed hierarchically as (a) yi|3 is normal and (b) §;|u; is normal with (c)

gamma uj; all three models are convex.

@ Thus the IWLS algorithm overcomes the difficulties of a non-convex optimization by

solving three interlinked convex optimizations.

e Equalizing the score equations for 3 from (5) and from the PLS (6), we have
BL+N/) —z=0Qx/0B = —(z = B) + pa(B);
and get a useful general formula

a(B) = A3/pA(B), (8)

which allows us to obtain results for LASSO, SCAD or the so called adaptive LASSO
by using different random effect estimates & in the IWLS of (5).
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Scalar § case

@ Examples of the penalty derivatives for some methods are given in the next table.
Types  pA(B)
LASSO  Asign(S)
SCAD  Asign(3 ){ (18] < A) + @180 (1) > /\)}

HL AB/{w{(2/w — 1) + ffj}/4}
where r; = {862/ (wd) + (2/w — 1)2}1/2

Table. Derivative of penalty functions for some methods

@ For the LASSO, px(8) = A8, so & = |3|.
@ For the adaptive LASSO, px(8) = 2\|8|/|z|, so & = |B]|z|/2.

e For the SCAD, & = |8|/{I(|18] < \) + (a(Aa IIB”* 1(]B8] > A)} for some a > 2.
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Scalar g case

w=2 w= 30

4 2 0 2 4 -4 2 0 2 )
z z
Adaptive LASSO SCAD with a=4
<4
~ A
<2 o e
o
1
=« |
l
-4 2 0 2 )
z z

Figure 11.3 Different IWLS solutions (11.8) as a function of z at fived X = 1
(solid), A = 2 (dashed) and A = 0.5 (dotted). The formula for U is given by
(11.5) for w =2 and 30, and by (11.11) and (11.12) for the adaptive LASSO
and SCAD estimates, respectively.
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Structured variable selection

@ In regression problems, explanatory variables often possess a natural group structure.
o categorical factors are often represented by a group of indicator variables
o to capture flexible functional shapes, continuous factors can be represented by a linear
combination of basis functions such as splines or polynomials.

@ In these situations, the problem of selecting relevant variables involves selecting
groups rather than selecting individuals.
@ Depending on the situation, the individual variables in a group may or may not be
meaningful scientifically
o If they are not, we are typically not interested in selecting individual variables and the
interest is limited to group selection.
o However, if the individual variables are meaningful, then we would be interested in
selecting individual variables within each selected group; we refer to this as bi-level
selection. (Huang et al., 2012)
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Structured variable selection

@ Suppose that the explanatory variables can be divided into K groups and the

outcome y = (Y1, ,¥n)" has mean u = (p1, -, un)" that follows a GLM with
link function n; = h(u;), such that we have a linear predictor n = (11, ,7)7,
n=XB= X1+ -+ XxBk 9)

where X = (X1,--+ ,Xk) and 8 = (B1, -, Bk)" are collection of n x p, design
matrices and pi regression coefficients, respectively.
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Structured variable selection

@ For group selection, Lee et al. (2015) considered a random effect model

Bkj|UkNN(07Uk0)7 k=1,---,Kand j=1,---  px (]_0)
ux ~ gamma(wy), k=1,---,K (11)

where 0 and wy are regularization parameters that control the degree of shrinkage
and sparseness of the estimates.
o For a given 6, the sparsity among the groups increases as wy's get larger, while for
fixed wy's the shrinkage becomes smaller as 6 increases.
@ Group selection is achieved as follows.
o If iy =0, then Gy = 0 for all j.
o If i > 0, then Gy # 0 for all j.
@ This means that the model is limited to group-only selection, as it does not impose
sparsity within the selected groups.
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Structured variable selection

@ Bi-level selection can be done by extending the model (10) as follows:

Bij |t vig ~ N(0, ukvigh), k=1,---,Kandj=1,---,pc  (12)
ug ~ gamma(wy) (13)
vij ~ gamma(T). (14)

where uy is the random effect corresponding to the k—th group and vy; is the
random effect corresponding to the j—th variable in the k—th group.

@ Hence this model selects variables at both the group level and the individual variable
level within selected groups.

o If oy =0, then Bi; =0 forall j=1,...,p.
o If Uy > 0, then f4; = 0 when ¢ = 0.
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Interaction and hierarchy constraints

@ Interaction terms in regression models form a natural hierarchy with the main
effects, so their selection requires special consideration.

@ It is common practice that the presence of an interaction term requires both of the
corresponding main effects in the model. This may be called a strong hierarchy
constraint, while the weak version requires only one of the main effects to be present.

@ We can use a random effect model to impose sparse selection of interaction terms

under the hierarchy constraints.
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Interaction and hierarchy constraints

@ Consider a p-predictor GLM with both main and interaction terms.

P
Ni :,Bo +ZXUﬁj+ZX,'jX,'k5J'k, i = 1,...,[‘]7
j=1

j<k

which we write in matrix form as
n=Xp + Z6,

where n = (11,...,mn) is the vector of linear predictors, 8 = (B1,...,08p) and

0 = (d12,...,0p—1,p) are the vectors of the corresponding regression coefficients for
main and interaction terms, respectively. Similarly, X is the design matrix of the
intercept and linear terms for the main effects, and Z is that of the cross product
terms for the interactions.

259 / 282



Interaction and hierarchy constraints

@ Lee et al. (2015) proposed the use of random effect model.

@ Under the strong hierarchy constraint,

Bilu ~ N(0, u;6),
Okj| Uk, uj, vig ~ N(O, ugujvi;0) for k > j

uj ~ gamma(wy) and v ~ gamma(wa).
@ Under the weak hierarchy constraint,

Bjluj ~ N(0, u;0),
Sij i, ujy vig ~ N(O, (uk + uj)viit)

u; ~ gamma(wy) and v ~ gamma(wz).
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Interaction and hierarchy constraints

(Byusg) (Byyuq) (Bauq) (Bypuq) (Byuq) (Bg,us)

(812ruquy) (613,uqus) (Brpuzug)  (Grzugtug)  (Syzugtuy) (873 +u3)

(@) (b)

Figure 10.2 A model with main effects and interaction terms under (a) strong
hierarchy and (b) weak hierarchy constraints.
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Functional marginality and general graph structure

@ For completeness, we describe here other statistical models in which the notion of
hierarchy applies, and show how to model them using the random effects approach.

@ Suppose we want to fit the second-order mixed polynomial model
n=Xpr+ -+ XpBp + X261 + X1 Xob12 - - - + thspp, (15)

where X X; denotes the component-wise product between the two column vectors.

@ To maintain the functional marginality rule, we consider a random effect model
Biluj ~ N(O, u;6),
Sjiluj, vij ~ N(0, ujv;6),
S| s uj, vig ~ N(O, ukujvig6),
u; ~ gamma(wy) and v ~ gamma(wz).
o This is analogous to the strong hierarchy in previous model, but now we include d;;.
It can be easily extended to general higher-order models.
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Functional marginality and general graph structure

@ Various hierarchical structures can be represented by a directed graph.

(Byyuq) (By,uq)

(52»“1"2

(Byuyuyuy) (Bs uquzugug) (Bsrugugug)  (Bsyu(uy + uz)us)

(@) (b)

Figure 10.3 The directed graph structure representing hierarchy of variables
under (a) strong hierarchy and (b) weak hierarchy constraints.
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Functional marginality and general graph structure

@ In Figure 10.3 (a) for strong hierarchy, Xs can be included if (X1, X2, X3) are included
in the model. This graph can be modeled by the following random effect model:

Bi|ur ~ N(0, u16),

Ba|uz, uz ~ N(0O, uyu20),

Bs|uz, us ~ N(0O, uyusb),

Baluy, uz, us ~ N(O, uruz2u46),
Bs|uz, uz, uz, us ~ N(0, uyupuzush),
uj ~ gamma(w) for j=1,...,5.

o For weak hierarchy, Xs can be included if the model includes, besides Xi, at least

one of X, and X3. This graph can be modeled by

Bs|u1, tn, uz, us ~ N(O, ur(uz + us)us8).
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Functional marginality and general graph structure

@ This illustrates how the random effect model can be adapted to describe various
hierarchical structures in the covariates.

@ The HL method can easily applied to produce sparse versions of classical
multivariate techniques, such as the principle component analysis, canonical
covariance analysis, partial-least squares for Gaussian and that for survival outcomes
(Lee et al., 2010, 2011a,b, 2013).

o Furthermore, it is straight forwards to apply HL method to various class of HGLM
models via penalized h-loglikelihood; general frailty models (Ha et al., 2014a) and
competing risks models (Ha et al., 2014b)
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o Disease progression of diabetes in Efron(2004)
o 442 diabetes patients
o 10 predictive variables: age, sex, bmi, bp and 6 types of serum measurements
o Response variable: a measure of disease progression
o Consider a quadratic model having p = 64 predictive variables
o 10 original terms
e 9 quadratic terms (except for binary variable)
e 10Co = 45 interaction terms

@ We compare three methods: LASSO, SCAD and HL (w = 30).

Method LASSO SCAD HL
Number of variables 15 12 14
CV error 2088.69 2082.85 2891.76
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LASSO SCAD HL

sex -5.43  -11.07 -10.86
bmi 23.89  25.14 23.63
map 12.04 15.16  15.17
hdl -9.00 -12.98 -12.52
ltg 2228 2349 2289
glu 0.89 2.93

age

age? 0.35 0.95 2.76

bmi? 1.29 0.06 2.13

glu? 2.25 2.31 3.51

age:sex 5.26 7.33 7.46
age:map 1.53 0.68 1.69
age:ltg 0.43 0.01 1.55
age:glu 0.58

sex:map 0.03 2.29
bmi:map 3.87 5.23 5.13
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@ The numbers of variables selected by the three methods are similar, varying from 10
to 15, though the HL method has the smallest cross-validated error (Kwon et al.,
2016).

o If we look at estimates of main effects, the LASSO estimators are shrunk the most

and the SCAD estimators the least.

@ We see that all methods include the age:sex interaction in their final model,
consistent with the known result that diabetes progression behaves differently in
women after menopause

@ As seen in Table 10.2, with an automatic variable selection method with large p, the
marginality rule will be easily violated. A systematic way of handling such a problem

is grouped model selection as we shall show.
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ex. Gene-gene interaction

@ As an illustration, we analyse gene-gene interaction in a cohort study called ULSAM
(Uppsala Longitudinal Study of Adult Men).

@ Ongoing population-based study of all available men born between 1920 to 1924 in
Uppsala County, Sweden.

@ Analyse a subset of n = 1179 subjects for which we have genetic data.
@ The primary outcome is body-mass index (BMI), a major risk factor for many

cardiovascular diseases.

o Based on several criteria, we selected 10 single-nucleotide polymorphisms (SNPs) as
the predictive variables. (Lee et al., 2015)
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ex. Gene-gene interaction

5
Figure 10.4 Results from various methods applied to ULSAM data. In each
graph, each node represents a SNP, the size of the main effect is represented

by the circle size and the interaction by the thickness of the line between two
nodes.
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ex. Gene-gene interaction

@ The ordinary least squares (iOLS) method estimates all the interaction terms and
connot recognize the linkage disequillibrium between SNPs 1, 2 and 5.

@ The largest interactions in iOLS are (1,6), (1,7), (5,7). In contrast, all the sparse
methods select (1,4) and (3,6) as the most interesting pairs.

o As expected, unconstrained methods (iLASSO and iHL) select interaction term
without main effects, which can lead to misleading conclusions.

@ The hierarchy constrained method (wHL and sHL) have comparable sparsity and
they both select only one of the linked SNPs 1, 2 and 5. If strong hierarchy is
desired, sHL method provideds a sensibly sparse solution in this case.
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Chapter 11. Further Topics : Multiple Testing

Single hypothesis testing

o Single hypothesis testing problem on the mean of Y ~ N(u,1).
Ho:p=po vs. Hi:p=m

@ The classical Neyman-Pearson likelihood ratio is

L= f(ylH)
f(y|Ho)

@ Let a discrete random effect be o = 0 if Hp is true and o = 1 if H; is true. Then the
h-likelihood is

f(y,0) = f(ylo)P(o)
@ Hence, the h-likelihood ratio is

fly,o=1) _ fly|H)Plo=1) _1-po

R 00=0) ~ FyIH)Po=0) ~

L
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Single hypothesis testing

o For the test depending on the value of L, py should be strictly between 0 and 1.
However, in single hypothesis testing, po is not estimable.

@ Both L and R give equivalent optimal tests, but the h-likelihood ratio R opens up a
way for testing multiple hypotheses.

@ The h-likelihood ratio can also be interpreted as a ratio of predictive probabilities.

r_fro=1) _ Plo=1y)f(y) _ Plo=1ly)
f(y,o=0) Plo=0ly)f(y) P(o=0ly)

@ We can show that the optimal test is determined by the ratio of predictive
probabilities R, equivalent to the h-likelihood ratio.
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Single hypothesis testing

@ With the loss function that depends on },
o(1-0)+A(1—-o0)d
we have the risk
E(o(1 —0)+ M1 —0)dly) = P(o=1ly)+ P(o =0|y)(A — R)d
o The optimal test §* is determined by the h-likelihood ratio,
> =1I(R>\)

@ In the single hypothesis testing, po may not estimable, (R = lfT””L may not be

calculated), so that need to define the optimal test without po.

o Define the optimal test as 6% = /(L > X\*)(= /(R > \)) where \* = 1A_"P°O, for some
0 < po < 1. And choose \* to satisfy P(6*" = 1|Hp) < av.
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Multiple testing

o Most literature on multiple testing has focused on the error control, not the power
of the test.
@ The h-likelihood gives the optimal test maximizing the power of the test.

@ Suppose that we have N null hypotheses Hi, ..., Hy to test simultaneously.

=0 6=1 Total
o=0 Voo Vo1(Type 1 error) No
o=1 | Vi (Type 2 error) Vi1 Ny
Total Mo My N

@ There are methods choosing the threshold of test.

- control the family wise error rate(FWER)
- control false discovery rate(FDR)
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Multiple testing

o Family wise error rate
The probability of at least one false positive.

FWER = P(Vo1 > 1)
o False discovery rate

The expected proportion of errors among rejected hypotheses.

_ Vo
—-r

Following Efron (2004), we use the marginal FDR

E(Vo1)

mFDR =
E(My)
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Multiple testing

@ Similar to single case, with the loss
Z O,‘(]. — 5,) + A(]. — o,-)5,-
the optimal rule 6* = {67, ..., 53} becomes

N =1I(Ri > \)

E(No)
N

@ In multiple testing case, po = is estimable, so that R; can be directly used.

o With the optimal rule §*, the marginal false discovery rate is given by

E(V01) o ZP(O; = 0,(;,/\ = 1)
E(M:) E(Z0M)

@ And the estimated mFDR is given by

mFDR()\) =

— Bo > P(Ri > A|Hui)
mFDRO) = 5 B

277/ 282



Multiple testing

—

@ mFDR(X) can be controlled by mFDR()) at a specific level by varying A.

@ Parameters can be estimated by maximizing marginal likelihood. And if the MLE for
0 is consistent, the likelihood ratio test is asymptotically optimal.

o Random effect model for multiple testing Suppose that yjj; for the ith site of the
Jth individual in the control group and yjj» in the treatment group can be modeled
fori=1,2,....,N as

yiu = &iten
Yie = &+ witep

where &; is the site effect, w; is the random treatment effect and €, is the error
with E(ejm) = 0 and Var(ejm) = dim.
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Multiple testing

Assume that the random treatment effect w;s are independent with

E(wi|Hoi) 0 and Var(w;|Hoi) = o?
E(wi|Hiy) = p#0and Var(w|Hy) =1°

@ Then, for the difference in means d; = yi» — ¥i1, we have the following hierarchical

model:

Conditional on  w; and o;, E(di|wi, 0i) = w;

and Var(di|w;, 0;) = 9y
Conditional on  o; = 0, E(w;|Hoi) = 0 and Var(w;|Ho;) = o
Conditional on  o; = 1, E(wi|H1;) = p and Var(w;|Hy;) = 7°

where ©; = ¢j1/n + ¢in/na.
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Multiple testing

o Let v = (w, 0) be unobservables, and y be the set of all observations. The
h-likelihood is defined to be

L(v,0;y,v) = fo(y,v) = fa(y)Pa(vly)

@ Suppose that we are not interested in effect size w;, we can integrate them out. It
leads the model for d = (d, ..., dn)

Given o; = 0, E(d,'lHo,‘) =0 and Var(d;|H0;) = 1/],‘ -+ 0'2
Given o; = 1, E(d;|H1i) = u and Var(di|Hyi) = ¥i + 2
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Multiple testing

@ Then the h-likelihood is given by

L(o,0;d,0) = fy(d,0) = H L(o;)
where
Lloo=1) = P(or=1)fs(dilo; =1) = (1 — po)fa(di|Hir)
L(o;=0) = P(oi =0)fy(dilo; = 0) = pofa(di|Hoi)
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ex. Neuroimaging data

o PET data from the study of the Korean standard template.
@ The data consists of scans of 28 healthy males and 22 healthy females.

o Each image has N = 189, 201 voxels.

@ Previous methods have not identified any voxel in the brain to be significant and Lee
and Lee (2017) identified some significant voxels. So the method based on
h-likelihood ratio test is the most powerful one.

Figure 10.5 Multiple testing for the neuroimage data by using likelihood-ratio
testing. The gray-colored (black-colored) region are negatively (positively) ac-
tivated.

282 /282



	Intro
	Chapter 0. Basic Analysis
	Materials

	Chapter 1. Regression
	Linear Regression Model
	ex. Carstopping
	ex. Ozone
	ex. UCB admission

	Chapter 2. GLMs
	GLMs
	IWLS for GLMs
	ex. Crack growth
	Poisson GLM
	ex. Train
	Logistic GLM
	ex. Crabs
	Probit GLM
	ex. Snoring
	Bradley - Terry Model
	ex. Tennis

	Chapter 3. H-likelihood
	Introduction
	Likelihood Inference for Random Effects
	Extended Likelihood Principle
	Laplace approximation for the integrals
	Street magician
	H-likelihood and empirical Bayes
	ex. Epilepsy

	Chapter 4. HGLMs: Algorithm
	Introduction
	IWLS algorithm for interconnected GLMs
	IWLS algorithm for augmented GLMs
	IWLS algorithm for HGLMs
	ex. Epilepsy continued
	ex. Injection
	ex. Crack growth continued
	ex. Bacteria

	Chapter 5. HGLMs: Modeling
	ex. Cake
	ex. Fabric
	ex. Train continued
	ex. Salamander
	ex. Integrated circuit
	ex. Semiconductor
	ex. Respiratory
	ex. Orthodontic growth
	ex. Scottish lip cancer
	ex. Loaloa
	ex. Gas Consumption
	ex. Prestige

	Chapter 6. DHGLMs
	Model description for DHGLMs
	ex. Crack growth continued
	ex. Gas consumption continued
	ex. Exchange rate
	ex. Orthodontic growth continued
	ex. Schizophrenic behavior
	ex. Respiratory continued
	ex. Salamander continued
	ex. Bacteria continued
	ex. Epilepsy continued
	ex. Stroke
	ex. Curve
	An extension of linear mixed models via DHGLM

	Chapter 7. MDHGLMs
	ex. Ethylene glycol
	ex. Rheumatoid arthritis
	ex. National merit scholarship qualifying test
	ex. Vascular cognitive impairment
	ex. Mother's stress and children's morbidity
	ex. Primary biliary cirrhosis
	ex. Missing data mechanism for the schizophrenic behavior
	ex. Law school admission

	Chapter 8. Survival Analysis
	Frailty models
	ex. Kidney infection
	ex. Rat
	ex. CGD infection
	ex. Bladder cancer
	Grouped duration model
	ex. Smoke onset
	Competing risk models
	ex. Simulated data
	H-likelihood theory
	Estimator of baseline hazard function

	Chapter 9. Joint Models
	ex. Serum creatinine
	ex. AIDS
	ex. Primary biliary cirrhosis continued
	H-likelihood construction
	Iterative least squares equations
	Fitting procedure

	Chapter 10. Further Topics : Variable selection
	Penalized least-square methods
	Random effect variable selection
	Implied penalty functions
	Scalar case
	Structured variable selection
	Interaction and hierarchy constraints
	Functional marginality and general graph structure
	ex. Diabetes
	ex. Gene-gene interaction

	Chapter 11. Further Topics : Multiple Testing
	Single hypothesis testing
	Multiple testing
	ex. Neuroimaging data


