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Linear model (Ch 2)

Linear mixed model Generalized linear model
(LMM, Ch 3) (GLM, Ch2)

Generalized linear mixed Joint GLM (Ch 4)

Factor analysis model (GLMM, Ch 4-5) Generalzed inear model Mulﬁg}\‘eltgsting
(Ch7) Generalized linear model including including ':i';";':""’;":”“'w"h ( )
Gaussian random effects
Hierarchical GLM
Structural (HGLM, Ch 2-5)
Equation Models Generalized linear model induding Gaussian
(SEM, Ch7) Okpen can b ot g s,
HGLMs with correlated Frailty HGLM (Ch 8)
random effects (Ch 5-6) HGLMs for survival analysis

Including spatial, temporal

indluding competing risk
correlations, splines, GAM. models.

Variable selection Double HGLM
(Ch 10) —_—) (DHGLM, Ch 6)
Ridge regression, LASSO, HGLM including dispersion model
and extensions with both fixed and random effects

Multivariate DHGLM
(MDHGLM, Ch 7)

DHGLM including outcomes from
several distributions
v
Joint model
Double SEM

(ch7) (ch9)
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Chapter 0. Basic Analysis

Materials : Download data-sets and manual

Albatross Analy talmport  DataManagement Random Effect Mod Multiple Respon:

Download Dataset & Manual
e

Manual PDF Link

http://cheoling.snu.ac kr:3838/Manual/Manual pdf
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Data Import

Albatross Analytics  Datalmport — DataManagement v  Basic Analysis v Random EffectModel v Survival Analysis +  Multiple Response Analys Materials

Upload File

Browse... epilepsy(pagebb).csv

Lolcad

¥ Header
Separator

Comma v

& DownloadData | Reset Data
mm pataselection @ singe 1 multple

Show[10 v entries

y T B A v

1 5 0 1011600912 343399 -3
2 3 0 1011600912 343399 1
3 3 0 1011600912 343399 1
4 3 0 1011600912 343399 3
5 3 0 1011600912 34012 -3
6 5 0 1011600912 34012 1
7 3 0 1011600912 34012 1
8 3 0 1011600912 34012 3
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Make Variable

Albatross Analytics  Datalmport  DataManagement v B: Random Effect Model v Survival Analys

MakeVariable ~ ConvertDataType  Select Rows Data Summary : epilepsy(page66).csv
Make Variable
Data Frame
New Variable Name
gt y T B A V patient id
5 0 101 343 3 1
’ 3 0 101 343 -1 1 2
Expression 3 0 101 343 1 13
log(AV/B 3 0 101 343 3 14
/ 3 0 101 340 3 2 s
Tools for Expression 5 0 101 340 -1 2 6
3 0 101 340 1 2 7
3 0 101 340 3 2 8
2 0 041 32 3 3 9
4 0 o041 32 1 3 10
0 0 o041 32 1 3 un
5 0 041 32 3 3 12
4 0 069 35 3 4 13
4 0 069 35 -1 4 1
1 0 06 358 1 4 15
4 0 069 35 3 4 16
7 0 280 309 3 5 1
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Make Variable

Albatross Analytics ta Import )ataManagement v BasicAnalysis+  Regression~  Random Effect Model ~ rvival Analysis +  Multiple Response Analysis +  Materials ~

Make Variable ~ ConvertDataType  Select Rows Data Summary : epilepsy(pageé6).csv

Make Variable

DataFrame  Data Atts

Select Rows Preview

New Variable Name

oghdiB y T B A V patent id logAdivB
5 0 101 343 -3 1 122

’ 3 0 101 343 -1 12 122

Err=io 3 0 101 343 1 13 122
log(A)/B 3 0 101 343 3 14 122
y 3 0 101 340 -3 2 5 121

Tk Bt 5 0 101 340 -1 2 6 121
3 0 101 340 1 2 7 121

3 0 101 340 3 2 8 121

2 0 041 322 3 39 288

4 0 041 322 -1 3 10 288

0 0 041 322 1 3 1 288

5 0 041 322 3 3 12 288

4 0 069 358 -3 4 13 184

4 0 069 358 -1 4 14 184

1 0 069 358 1 4 15 184

4 0 069 358 3 4 16 184

7 0 280 309 -3 5 17 040
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Make Variable

Albatross Analytics ta Import )ataManagement v BasicAnalysis+  Regression~  Random Effect Model ~ rvival Analysis +  Multiple Response Analysis +  Materials ~

Data Summary : epilepsy(pageé6).csv

Make Variable ~ Convert Data Type

Make Variable Run

DataFrame  Data Atts ct Rows Preview

New Variable Name

y T B A V patent id logAdivB

5 0 101 343 -3 1 122

’ 3 0 101 343 -1 12 122

Err=io 3 0 101 343 1 13 122
3 0 101 343 3 1 4 122

y 3 0 101 340 -3 2 5 121

- Tt Bt 5 0 101 340 -1 2 6 121
Variable (Numeric Only) 3] 0|10t 340 B 2 7 121
3 0 101 340 3 2 8 121

2 0 041 322 3 39 288

Operator 4 0 041 322 -1 3 10 288
- 0 0 041 322 1 3 1 288

5 0 041 322 3 3 12 288

4 0 069 358 -3 4 13 184

4 0 069 358 -1 4 14 184

1 0 069 358 1 4 15 184

4 0 069 358 3 4 16 184

7 0 280 309 -3 5 17 040
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Albatross Analytics  Datalmport  DataManagement v B: Random Effect Model v Survival Analys

Make Varisble ~ ConvertDataType  Select Rows Data Summary : epilepsy(page66).csv

Convert Data Type ‘

‘ DataFrame  DataAttributes  Select Rows Preview

Data Type
. Name  Type
y integer
Variable T integer
8 numeric
A numeric
v integer
patient integer
id integer

logAdivB  numeric
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Albatross Analytics ta Import )ataManagement v BasicAnalysis+  Regression~  Random Effect Model ~ rvival Analysis +  Multiple Response Analysis +  Materials ~

Make Variable ~ ConvertDataType  Select Rows Data Summary : epilepsy(page66).csv

Convert Data Type ‘

‘ DataFrame  DataAttributes  Select Rows Prev

Data Type
Factor . Name  Type
y integer
Variable T integer
Vid B numeric
A numeric
v integer
patient integer
id integer

logAdivB  numeric
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Albatross Analytics ta Import

Make Variable ~ Convert Data Type
Convert Data Type

Data Type

Variable

Regression~  Random Effect Model rvival Analysis ~  Multiple Response Analysis +

Name
y

T

B

A

v
patient

id
logAdivB

Data Summary : epilepsy(pageé6).csv

DataAttributes  Select Rows Prev

Type
integer
integer
numeric
numeric
factor
integer
factor

numeric

Materials v
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Select Rows

Albatross Analytics  Datalmport  DataManagement ~ Random Effect Model v Survival Analys

MakeVariable ~ ConvertDataType  Select Rows Data Summary : epilepsy(page66).csv

Select Rows ‘

DataFrame  DataAttributes  Select Rows Preview

Expression

B>1

Tools for Expression
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Select Rows

Albatross Analytics ta Import )ataManagement v BasicAnalysis+  Regression~  Random Effect Model ~ rvival Analysis +  Multiple Response Analysis +  Materials ~

Make Variable ~ ConvertDataType  Select Rows Data Summary : epilepsy(pageé6).csv

Select Rows

Frame Select Rows Preview

Expression
Bo1 y T B AV patient id logAdivB
5 0 101 343 3 1 1 122
< 3 0 101 343 -1 1 2 122
Tools for Expression 3 0 101 343 1 1 3 122
3 0 101 343 3 1 4 122
3 0 101 340 -3 2 5 121
5 0 101 340 -1 2 6 121
3 0 101 340 1 2 7 121
3 0 101 340 3 2 8 121
7 0 280 309 -3 5 17 0.40
18 0 280 309 1 5 18 0.40
9 0 280 309 1 5 19 0.40
21 0 280 309 3 5 2 0.40
5 0 191 337 -3 6 21 0.64
2 0 191 337 1 6 22 0.64
8 0 191 337 1 6 23 0.64
7 0 191 337 6 24 0.64
6 0 110 343 -3 7 25 112
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Merge Data Set

Albatross Analytics  Datalmport urvival Analysis +  Multiple Response Analys Materials

Upload File

Browse... Crabsl.csv

Lolcad

¥ Header

Separator

Comma v

& DownloadData | Reset Data
mm pataselection @ singe 1 multple

Show[10 v entries

crab sat y weight
1 1 8 1 305
2 2 0 0 155
3 3 9 1 23
4 4 0 0 21
5 5 4 1 26
6 6 0 0 21
7 7 0 0 235
8 8 0 0 19
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Merge Data Set

Albatross Analytics  Datalmport  DataManagement v  BasicAnalysis~  Regression~  RandomEffectModel v Survival Analysis v Multiple Response Analysis v Materials v

Merge Datasets Merge into Crabs1.csv
Merge Datasets ‘ Data Frame Merge Dataset Previ
Upload Second Data

Main Dataset

cab sat y  weight width
“ Header 18 1 305 2830
2 0 0 155 2250
Separator
39 1 230 2600
Comma -

4 0 0 210 2480
Reference Variable for Main Dataset 5 4 1 260 2600
- 6 0 0 210 2380
7 0 0 235 2650

Reference Variable for Second Dataset
8 0 0 190 2470
T 9 0 0 195 2370
0 0 0 215 2560
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Merge Data Set

Albatross Analytics  Datalmport  DataManagement v  BasicAnalysis~  Regression~  RandomEffectModel v Survival Analysis v Multiple Response Analysis v Materials v

Merge Datasets Merge Crabs2.csv into Crabs1.csv
Merge Datasets Data Frame Mer,
Upload Second Data
S Main Dataset
crab sat y weight width
¥ Header 18 1 305 2830
2 0 0 155 2250
Separator
3 9 1 230 2600
Comma A
4 0 0 210 2480
Reference Variable for Main Dataset 5 4 1 260 2600
crab A 6 0 0 210 2380
7 0 0 235 2650
Reference Variable for Second Dataset
8 0 0 190 2470
crabd T 9 0 0 195 2370
10 0 0 215 2560

Second Dataset

crabl  color.l  spine.l
1 2 3
2 3 3
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Merge Data Set

Albatross Analytics ta Import )ataManagement v BasicAnalysis+  Regression~  Random Effect Model ~ rvival Analysis +  Multiple Response Analysis +  Materials ~

Merge Datasets Merge Crabs2.csv into Crabs1.csv
Ru
Merge Datasets = Merge Dataset Preview
Upload Second Data
" crab sat y weight width colorl spined
Crabs2.csv
8 1 305 2830
2 0 0 155 2250 3 3
¢ Header 3 9 1 230 2600 1 1
Separator 4 0 0 210 2480 3 3
Comma - 5 4 1 260 2600 3 3
6 0 0 210 2380 2 3
Reference Variable for Main Dataset
7 0 0 235 2650 1 1
crab ~
8 0 0 19 2470 3 2
Reference Variable for Second Dataset 9 0 0 195 2370 2 1
crabl . 0 0 0 215 2560 3 3
110 0 215 2430 3 3
12 0 0 265 2580 2 3
13 11 1 305 2820 2 3
14 0 0 18 2100 4 2
15 14 1 230 2600 2 1
16 8 1 295 2710 1 1
7 1 1 200 2520 2 3
1w 1 1 200 %000 2 2
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Descriptive Statistics

Datalmport  DataManagement Random Effect Model Survival Analy: Multiple Response Anal Materials

Upload File

S Crabs.csv

# Header
Separator

Comma v

P

Show[10 v entries Search:

crab sat y weight width color spine

1 1 8 1 305 283 2 3
2 2 0 o 155 225 3 3
3 3 9 1 23 26 1 1
4 4 0 [ 21 248 3 3
5 5 4 1 26 26 3 3
6 6 0 [ 21 238 2 3
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Descriptive Statistics

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model Multiple Response Analysis Materials

— Variable : width

Descriptive
Statistics
Variable (Numeric Only) Data Summary V fistogram
width -
Variable Results
Use Group

n mean min  median max sd se

width 1730000 262988 210000 261000 335000 21091 0.1603
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Descriptive Statistics

Albatross Analytics ~ Datalmport ~ DataManagemen

Random Effect Model le Response Analysis

. Variable : width
Descriptive m
Statistics
Variable (Numeric Only) DataSummary  Variable Histogram
width -
width
Use Group

count

widih
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Descriptive Statistics

Albatross Analytics ~ Datalmport ~ DataManagement ~  Basic Analysis +  Regression~  Random Effect Model ~  Survival Analysis ~  Multiple Response Analysis +

Variable : width

Descriptive Run
Statistics )
Variable (Numeric Only) DataSummary V. fistogram  Group Histogram
width -
Variable Results
# Use Group
n mean min median max sd se
Groups
width 1730000 262988 210000 261000  33.5000 2.1091 0.1603
Yy

Group Results
Yy n mean min median max sd se
0 62 251694 210000 254500 287000 16741 02126

1 111 269297 225000 27.0000 335000 20689 01964

Materials ~
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Descriptive Statistics

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model Multiple Response Analysis Materials

L Variable : width
Descriptive

Statistics

Variable (Numeric Only)

Summary  Variable Histo

Group Histogram
width
Select Histogram

 Use Group y:0 y:1

Groups

Group: y:0
y
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One Sample T-Test

Datalmport  DataManagement Random Effect Model Survival Analy: Multiple Response Anal Materials

Upload File

G ZeaMayscsy

# Header
Separator

Comma v

P

Show[10 v entries Search:

pair pot cross self diff
1 1 1 235 17.375 6125
2 2 1 12 20.375 8375
3 8 1 21 20 1
4 4 2 22 20 2
5 5 2 19.125 18375 075
6 6 2 215 18625 2875
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One Sample T-Test

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model

t-test S
Type of t-test Model Summary Dl
© Onesample C Paired © Unpaired
Variable (Numeric Only) Hypotheses
diff T
Hy  paigs=0
Null Value Hi paigs>0
0
t-test

Alternative Hypothesis
t df  pvalue meanofx se
greater

21480 140000 00249 26167 12182
Significance Level

005

Shapiro-Wilk Test (Normality)

Wilcoxon Test

lowerCl

04710

upperCl

Inf

Multiple Response Analysis

Materials
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One Sample T-Test

Albatross Analytics ~ Datalmport ~ DataManagement Basic Analysi Random Effect Model

— One Sample t-test
t-test

Summary  DataView

Type of t-test
® Onesample © Paired © Unpaired

Variable (Numeric Only)

diff

Null Value

0
Alternative Hypothesis ?

greater ®
Significance Level

005

Multiple Response Analysis

Materials

Shapiro-Wilk Test (Normality)

Wilcoxon Test
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One Sample T-Test

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model

t-test Run

Type of t-test Model Summary

® Onesample © Paired © Unpaired

Variable (Numeric Only)

Hypotheses
diff -
Ho  paigs=0
Null Value Hy a0
0
t-test
Alternative Hypothesis
greater . t df  pvalue  meanofix se  lowerCl  upperCl
21480 140000 00249 26167 12182 04710 Inf
Significance Level
005 : Shapiro-Wilks Results
@ Shapiro-Wilk Test (Normality) W pvalue
@ Wilcoxon Test Shapiro-Wilks 09008 00978

Wilcoxon Test
W pvalue

960000 00206

Multiple Response Analysis

Materials
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Paired T-Test

Datalmport  DataManagement Random Effect Model Survival Analy: Multiple Response Anal Materials

— Paired t-test
t-test Run

WG Model Summary  Data View
Onesample ® Paired © Unpaired

Variable 1 (Numeric Only) Hypotheses

cross
Ho  freross - teetf =0

Variable 2 (Numeric Only) Hy sty >0

self -

Null Difference frtest

o t df pvalue  mean.ofthedifferences se lowerCl  upperCl
21480 140000 00249 26167 12182 04710 Inf

Alternative Hypothesis.

greater -

Significance Level

005 s

Shapiro-Wilk Test (Normality)

Single Rank Test
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Paired T-Test

Albatross Analytics ~ Datalmport ~ DataManagement Basic Analysi Random Effect Model Multiple Response Analysis Materials

t-test

Type of t-test
Onesample ® Paired © Unpaired

Data View

Variable 1 (Numeric Only)

cross -

Variable 2 (Numeric Only)

self -

Null Difference

densty

0

Alternative Hypothesis.

greater -

Significance Level

005 5 . : o

Shapiro-Wilk Test (Normality)

Single Rank Test
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Unpaired T-Test

Albatross Analytics ~ Datalmport ~ DataManagement ~  Basic Analysis ~

ression ~  Random EffectModel +  Survival Analysi

~  Multiple Response Analysis +  Materials ~

Upload File

-
Eam—

Separator

Comma -

s

Show| 10+ |entries

erab sat y weight width color spine
1 1 8 1 305 283 2 3
2 2 0 0 155 225 3 3
3 3 9 1 23 2 1 1
4 4 0 0 21 248 3 3
5 5 4 1 26 2 3 3
6 6 0 0 21 238 2 3
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Unpaired T-Test

Albatross Analytics  Datalmport ~ DataManagement - BasicAnalysis - Regression ~  RandomEffectModel - Survival Analysis ~  Multiple Response Analysis ~  Materials -

‘ Unpaired t-test

t-test n
UL Model Summary  Data View
Onesample ) Paired ® Unpaired
Variable (Numeric Only) Hypotheses
width
Ho  po-piz=0
Group Variable Hy o pnto
Y -
tetest
Group 1
0 - t df pvalue meanofx  meanofy se lowerCl  upperCl
60824 1492430 00000 251694 269297 02894 23323 -11885
Group2
1 -
Null Value
0

Equal Variances

FALSE -

Alternative Hypothesis

twossided -

icance Level

005

Shapiro-Wilk Test (Normality)
Levene Test (Variance Equality)

Wilcoxon Rank Sum Test
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Unpaired T-Test

Albatross Analytics  Datalmport ~ DataManagement - BasicAnalysis - Regression ~  RandomEffectModel - Survival Analysis ~  Multiple Response Analysis ~  Materials -

= Unpaired t-test
t-test n

Type of t-test Model Summ Data View

Onesample ) Paired ® Unpaired
Variable (Numeric Only)

width hd o6-
Group Variable

v

Group1

danciy

0 -

Group2 oz-
1 -

Null Value '\ /\ PN Y

o < B B
vk

Equal Variances

FALSE -

Alternative Hypothesis

twossided

icance Level

005

Shapiro-Wilk Test (Normality)
Levene Test (Variance Equality)

Wilcoxon Rank Sum Test

30/569



Unpaired T-Test

Albatross Analytics  Datalmport ~ DataManagement - BasicAnalysis - Regression ~  RandomEffectModel - Survival Analysis ~  Multiple Response Analysis ~  Materials -

" ‘ Unpaired t-test

t-test
WEEERE: ModelSummary ~ DataView  Normal Q-Q
Onesample © Paired ® Unpaired
Variable (Numeric Only) Hypotheses
width -
Ho  po-p=0
Group Variable Hy  po-m A0
Y -
ttest
Group 1
o - t df pvalue meanofx meanofy se lowerCl  upperCl
60824 1492430 00000 251694 269297 02894 -23323  -11885
Group2
1 - -
Shapiro-Wilks Results
Null Value W pvalue
0 0 09894 09897
Equal Variances 108701 0569
FALSE -

Levene Results
Alternative Hypothesis

Df  Fvalue  Pr(>F)
twosided -

1 28584 00927

Significance Level
171 N NA

005

@I Shapiro-Wilk Test (Normality) Wilcoxon Test

@ Levene Test (Variance Equality) W p-value

@ Wilcoxon Rank Sum Test 17725000 0.0000
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Unpaired T-Test

Albatross Analytics  Datalmport ~ DataManagement~  BasicAnalysis~  Regression~  RandomEffectModel +  Survival Analysis ~  Multiple Response Analysis ~  Materials ~

Unpaired t-test
t-test

1View  Normal QQ

Type of t-test Model Summary
Onesample O Paired ® Unpaired
Variable (Numeric Only) ONormal G-

width

Group Variable

v

Group1
0

‘
FR————

Group2

1

Null Value
o ! 5
Theorsticl Guarties

Equal Variances 1 Normal G-
%

FALSE - B

Alternative Hypothesis .

twosided

Significance Level

005

\
\

¥ Shapiro-Wilk Test (Normality)

@ Levene Test (Variance Equality)
 Wilcoxon Rank Sum Test i A

Theorstical Guartiss

32 /560



ANOVA

Albatross Analytics  Datalmport — DataManagement ~  BasicAnalysis ~  Regression ~  Random Effect Model ~

Survival Analysis - Multiple Response Analysis ~  Materials ~

Upload File

BAam‘ssmnm
S —

@ Header
Separator

Comma -

s

Show| 10+ |entries

Gender Department

1 Male A 1
2 Male A 1
3 Male A 1
4 Male A 1
5 Male A 1
6 Male A
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ANOVA

Albatross Analytics  Datalmport ~ DataManagement - BasicAnalysis - Regression ~  RandomEffectModel - Survival Analysis ~  Multiple Response Analysis ~  Materials -

ANOVA ‘ Model : Admit ~ Department

Variable (Numeric Only)

Model Summary  Model Checking Plots
Admit -
Group Variable ANOVA
Department Df sumSq MeanSq  Fvalue  PrF.
5 4
(S T Model 1849140 369828 187.9140 00000
Residuals 4520  889.5678 01968 NA NA
Total 4525 10744819 NA NA NA
Shapiro-Wilk Test (Normality)
Breusch-Pagan Test (Homoscedasticity) Specific Results
Kruskal-Wallis Test Df SumSq  MeanSq Falue PrF.
Department 5 1849140 369828 1879140 00000
Residuals 4520 8895678 01968 NA NA
Total 4525 10744819 NA NA NA
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ANOVA

Albatross Analytics ~ Datalmport ~ DataManagement «

Basic Analysis - Regression ~  Random Effect Model ~

Survival Analysis - Multiple Response Analysis »  Materials «

ANOVA Run

Variable (Numeric Only)
Admit

Group Variable

Department

Make Interaction Variable

Shapiro-Wilk Test (Normality)
Breusch-Pagan Test (Homoscedasticity)

Kruskal-Wallis Test

Model : Admit ~ Department

ma Model Checking Plots

Normal @-Q

Stardardzad residusle

Thaorstiza Guanties
‘Scale-Location
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ANOVA

Albatross Analytics  Datalmport ~ DataManagement ~  BasicAnalysis - Regression ~  RandomEffect Model - Survival Analysis ~  Multiple Response Analysis ~  Materials -

ANOVA

‘ Model : Admit ~ Department

Variable (Numeric Only) Model Summary  Model Checking Plots

Admit -
Group Variable ANOVA
Department Df SumSq  MeanSq Fvalue  PrF
Yl VAT Model 5 1849140 369828 187.9140 00000
Residuals 4520  889.5678 01968 NA

Total 4525 10744819 NA NA
Shapiro-Wilk Test (Normality)
Breusch-Pagan Test (Homoscedasticity) Specific Results
@ Kruskal-Wallis Test Df SumSq  Mean.Sq Fvalue Pr.F.
Department 5 1849140 369828 187940 00000
Residuals 4520 8895678 01968 NA NA
Total 4525 10744819 NA NA NA

Kruskal-Wallis Results
Statistic df  p-value

7787344 50000 00000
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ANOVA

Albatross Analytics  Datalmport ~ DataManagement - BasicAnalysis - Regression ~  RandomEffectModel - Survival Analysis ~  Multiple Response Analysis ~  Materials -

ANOVA

‘ Model : Admit ~ Department+Gender

Variable (Numeric Only)

Model Summary  Model Checking Plots
Admit -
Group Variable ANOVA
Department Gender Df  SumSq MeanSq  Fvale  PrF
5. 5684
Make Interaction Variable Model 6 1851970 308662 1568499 00000
Residuals 4519 889.2849 01968 NA NA
Total 4525 10744819 NA NA NA

Shapiro-Wilk Test (Normality)
Breusch-Pagan Test (Homoscedasticity) Specific Results
Kruskal-Wallis Test

Df SumSq  MeanSq Fvalue  PrLF.
Department 5 1849140 369828 187.9323 00000
Gender 1 02830 02830 14379 02305
Residuals 4519 8892849  0.1968 NA NA
Total 4525 10744819 NA NA NA
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ANOVA

Albatross Analytics ~ Datalmport ~ DataManagement - BasicAnalysis - Regression - RandomEffectModel - Survival Analysis ~  Multiple Response Analysis ~  Materials -

ANOVA

‘ Model : Admit ~ Department+Gender

Variable (Numeric Only) Model Summary  Model Checking Plots

Admit -
Group Variable ANOVA
Department Gender D SmSq MenSq  Fvae  PrF.
s 5684
T O— Model 6 1851970 308662 1568499 00000
Residusls 4519 8892849 01963 NA

Total 4525 10744819 NA NA

@ Shapiro-Wilk Test (Normality)
 Breusch-Pagan Test (Homoscedasticity) Specific Results
Kruskal-Wallis Test

Df SumSq  MeanSq Fvalue  PrLF.
Department 5 1849140 369828 187.9323 00000
Gender 1 02830 02830 14379 02305
Residuals 4519 8892849  0.1968 NA NA
Total 4525 10744819 NA NA NA

Shapiro-Wilks Results
W pevalue

Shapiro-Wilks  0.9063 ~ 0.0000

Breusch-Pagan Results
BP df  p-value

Breusch-Pagan 5342254 60000 00000
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Frequency Analysis

Datalmport  DataManagement Random Effect Model Survival Analy: Multiple Response Anal Materials

Upload File

Browse.. RTINS

# Header
Separator

Space v

P

Show[10 v entries Search:

Sex  WrHnd NW.Hnd WHnd = Fold Pulse Clap  Exer Smoke Height Ml Age

1 1 Female 185 18 Right 3 92 Left Some Never 173 Metric
2 2 Male 195 205 Left 3 104 Left None. Regul 1778 Imperial
3 3 Male 18 133 Right 1 87  Neither None Occas

4 4 Male 188 189 Right 3 Neither None Never 160 Metric
5 5 Male 20 20 Right 2 35 Right Some Never 165 Metric
6 6 Female 18 177 Right 1 64 Right Some Never 17272 Imperial
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Frequency Analysis

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model

Multiple Response Analysis Materials

. Row Variable : Smoke
Frequency Analysis

Row Variable DataSummary ~ Chart
Smoke -

Use Column Variable Frequency Table

Freqeuncy  FreqPercent

Freq 115 29
None 2 10
Some. 98 41
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Frequency Analysis

Albatross Analytics ~ Data Import

Data Management Random Effect Model le Response Analysis

. Row Variable : Smoke
Frequency Analysis m
Wi Data Summary Chart

Smoke

Row Variable : Smoke
Use Column Variable 120

count

Smoke.
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Frequency Analysis

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model

Multiple Response Analysis Materials

5 Row Variable : Smoke , Column Variable : Exer
Frequency Analysis Run

Row Variable DataSummary ~ Chart
Smoke

“ Use Column Variable Frequency Table
Column Variable Left Neither Right Total
Exer

e Freq 19 34 62 115
Row Percent None 6 5 13
Column Percent Some 14 u 2 9%
Percent Total 39 50 147 236

Chi-squared Test

Fisher Exact Test
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Frequency Analysis

Albatross Analytics ~ Datalmport ~ DataManagement

Frequency Analysis

Row Variable

Smoke

@ Use Column Variable
Column Variable

Exer
Row Percent
Column Percent
Percent

¥ Chi-squared Test

“ Fisher Exact Test

Random Effect Model

Row Variable : Smoke , Column Variable : Exer

Data Summary

Frequency Table

Left  Neither Right Total

Freq 19 34 62 115
None 6 5 13 24
Some 14 11 72 97
Total 39 50 147 236

Pearson's Chi-squared
X-squared df  p-value

133195 40000 00098

Fisher Exact Test
pvalue  Alternative

00073 twosided

Multiple Response Analysis

Materials
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Frequency Analysis

Albatross Analytics ~ Datalmport ~ DataManagemen Multiple Response Analysis Materials

Row Variable : Smoke , Column Variable : Exer
Frequency Analysis m

Row Variable DataSummary  Chart

Smoke -
@ Use Column Variable
Column Variable
Exer -
Row Percent

Column Percent g

Percent

¥ Chi-squared Test

“ Fisher Exact Test

Smoke
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Correlation Analysis

Datalmport  DataManagement Random Effect Model Survival Analysis Multiple Response Anal Materials

Upload File

SV possum.txt

# Header
Separator

Teb v

e

Show[10 v entries Search:

site - pop sex age headl skullw totall tailL
1 1 Vic m 8 94.1 604 89 36
2 1 Vic f 6 925 576 915 365
3 1 Vic f 6 94 60 955 39
4 1 Vic f 6 932 571 92 38
5 1 Vic f 2 915 563 855 36
6 1 Vic f 1 931 548 905 355
7 1 Vie m 2 953 582 895 36
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Correlation Analysis

Albatross Analytics ~ Datalmport ~ DataManagement Random Effect Model Multiple Response Analysis Materials

— Variable : headL, skullW, totall, tailL

Correlation Run
Analysis :
Variable Selected CorrelationResults  Correlation Plots
site - headl -
age skullW' . .
otall Correlation Matrix
taill
headL  skullW totall taill
headL 10000 07108 0.6911 0.2874
skullW 07108 10000 05264 02559
totall. 06911 05264 10000 05656
@ tailL 02874 02559 0.5656 1.0000
: C - Sample Size
Coefficient Type Count
Pearson v
Total 104
Plot Type
Scatter - Probability Values
headL skullW totall taill

headl ~ -00000 00000 00000 00062
skullW 00000 -00000 00000 00087
totall 00000 00000 -0.0000 00000

taill 00031 00087 00000 -0.0000
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Correlation Analysis

Albatross Analytics

Data Import

Correlation Analysis

Variable
site
age

Coefficient Type

Pearson

Plot Type

Scatter

Selected
headl
skullw
totall
taill

@
©®

Data Managemer

Random Effect Model le Response Analysis

Variable : headL, skullW, totalL, tailL

Correlation Results  Correlation Plots

L L
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Correlation Analysis

Albatross Analytics ~ Datalmport ~ DataManagemen

Random Effect Model Multiple Response Analysis Materials

R . Variable : headL, skullW, totall, tailL
Correlation Analysis m
Ve Eelec CorrelationResults  Correlation Plots
site - headl -
age skullw/
totall.
taill

tail

totall

®
® :

Coefficient Type
Pearson

Plot Type

Heat Map (with Value)
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Chapter 1. Regression

Linear Regression Model

Components of Linear Regression
@ the response Y
@ the linear predictor : u = E(Y) = X
@ the distribution of y : Gaussian Distribution

@ Variance : Var(Y) = ¢/

Gaussian Distribution

o Log-likelihood

_ 2
log L(u, ¢;y) = —% - % log (27¢)
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Linear Regression Model

Normal Equation

o (XTWX)B = XT Wy where W =
— (X"X)B=xXTy

1
El

o B=(X"X)"'XTy, Var (B) = (X"WX)™' = ¢(X"X)"!

Hat matrix H = X(X"X)7'x"

Leverage g; : i-th diagonal elements of H

N

Residual é,' =Yi— X,'ﬁ

Studentized residual :

(Eh

Vol —aq)
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ex. Carstopping - carstopping.txt

@ The data give the speed of cars and the distances taken to stop. Note that the data
were recorded in the 1920s (Ezekiel,M.,1930).

StopDist : stopping distance (ft)
Speed : speed of car (mph)

Model 1 : StopDist = o + 3 Speed
Model 2 : StopDist = o + (8 Speed?

Stopbist
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ex. Carstopping - data management

Make Variable Convert Data Type Select Rows

Make Variable m

New Variable Name

Speed2

Expression

Speed”2

Tools for Expression
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ex. Carstopping - Model 1 and Model 2

Linear Model Linear Model
Model Model
StopDist ~ Speed StopDist ~ Speed2

Response Variable Response Variable

StopDist - StopDist v
Variable Selected Variable Selected
StopDist Speed StopDist Speed2
Speed?2 Speed
@ Comparison With Other Model @ Comparison With Other Model
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ex. Carstopping - Model 1 and Model 2

Model summary for model 1

ANOVA

Df Sum Sq Mean Sq
Speed 1 59540.14828  59540.14828
Residuals 61 8492.74061 139.22526
Coefficients

Estimate  Std.Error tvalue
(Intercept)  -20.27342 3.23837  -6.26038
Speed 3.13659 0.15167  20.67978

Fvalue Pr(>F)
427.65336  0.00000
NA NA
Pr(>|t|)
0.00000
0.00000

Model Summary
Num of obs
F(1,61)

Prob » F
R-squared

Adj R-squared
Residual Std.Error

AlC

63.00000

427.65336

0.00000

0.87517

0.87312

11.79938

493.72769
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ex. Carstopping - Model 1 and Model 2

Model checking plots for model 1

Studentized Residual

Residuals vs Fitted

|Residuals| vs Fitted

|Studentized Residual|

2 0 100
Scaled Fitted Values

Normal Probability Plot

25 50 75 100
Scaled Fitted Values

Histogram of Studentized Residual

Standardized Residual

Frequency

K o 1
Theoretical Quantiles

0 2
Studentized Residual
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ex. Carstopping - Model 1 and Model 2

Model summary for model 2

ANOVA

Df Sum Sq Mean Sq
Speed?2 1 6211828810 62118.28810
Residuals 61 5914.60079 96.96067
Coefficients

Estimate  Std.Error tvalue
(Intercept)  5.00717 1.83476 2.72905
Speed2 0.07506 0.00297  25.31115

Fvalue
640.65449

NA

Pr(>[t])
0.00829

0.00000

Pr(>F)
0.00000

NA

Model Summary

Num of obs 63.00000
F(1,61) 640.65449
Prob » F 0.00000
R-squared 0.91306
Adj R-squared 0.91164
Residual Std.Error 9.84686
AlC 470.93506
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ex. Carstopping - Model 1 and Model 2

Model checking plots for model 2

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Carstopping - Model 1 and Model 2

Comparison of two models

Comparison Model

Model Offset  Resdf Sum.sq R-squared  AdjR-squared  AIC BIC
1  StopDist ~Speed NA 61 8492.74061 087517 087312 493.72769  500.15709
2 StopDist~Speed2  NA 61 5914.60079  0.91306 0.91164 470.93506  477.36447
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ex. Ozone - Ozone_original.csv

@ Ozone data measured for 330 days in 1976. All measurements are in the area of
Upland, CA, east of Los Angeles (Breiman and Friedman, 1985).
TempSandburg : Sandburg Air Force Base temperature (°C)
InvHeight : inversion base height (ft)
DaggettPressure : Daggett pressure gradient (mmhg)
PresHeight : Vandenburg 500 millibar height (m)
Visibility : visibility (miles)
Humidity : humidity (%)
Wind : wind speed (mph)
Day : day of the year

Ozone : upland ozone concentration (ppm)

Model : Ozone = o + 1 TempSandburg + 3> InvHeight +
3 DaggettPressure + (34 PresHeight
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ex. Ozone - Linear model

Linear Model m

Model

Ozone ~
TempSandburg+InvHeight+DaggettPres+Pre
sHeight

“

Response Variable

Ozone A
Variable Selected
Humidity TempSandburg
Wind InvHeight
Day DaggettPres
Qzone PresHeight
Visibility
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ex. Ozone - Linear model

Model summary

ANOVA Model Summary
Df Sum Sq Mean Sq Fvalue Pr(>F) Num of obs 330.00000
TempSandburg 1 1286977487  12869.77487  587.29456  0.00000 F(4,325) 159.64316
InvHeight 1 889.39553 889.39553 40.58635  0.00000 Prob > F 0.00000
DaggettPres 1 224.02204 22402204 10.222%4  0.00152 R-squared 0.66271
PresHeight 1 10.27324 10.27324 046881  0.49403 AdjR-squared 0.65856
Residuals 325 7121.94037 21.91366 NA NA Residual Std.Error 4.68120
AIC 1962.20757
Coefficients
Estimate Std. Error tvalue Pr(>|t])
(Intercept) 11.10474 2629577 042230 0.67308

TempSandburg 0.36432 0.03703 9.83891  0.00000

InvHeight -0.00118 0.00017  -6.84503  0.00000
DaggettPres 0.02084 0.00866 240565 001670
PresHeight -0.00333 0.00487  -0.68469  0.49403
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ex. Ozone - Linear

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. UC Berkeley Admission - UCBAdmission2.csv

o Aggregate data on 4,526 applicants to graduate school at Berkeley for the six largest
departments in 1973 classified by admission and sex (Bickel et al., 1975).

Gender : Male, Female
Department : A, B, C,D, E, F
Admit : 1(Admit), O(Reject)

Model 1 : Admit = 8o + B1 Gender
Model 2 : Admit = By + B1 Gender + B> Department

Depart

Total Admission Probabilty
—

Gender
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ex. UC Berkeley admission - Model 1 and Model 2

Linear Model

Model

Admit ~ Gender

Response Variable

Admit hd
Variable Selected
Department Gender
Admit

@ Comparison With Other Model

Linear Model

Model

Admit ~ Gender+Department

Response Variable

Admit v
Variable Selected
Admit Gender
Department.

@ Comparison With Other Model
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ex. UC Berkeley admission - Model 1 and Model 2

Model summary for model 1

ANOVA Model Summary
Df Sum Sq Mean Sq Fvalue Pr(>F) Num of obs 4526.00000
Gender 1 2188973 2188973 94.08119  0.00000 F(1,4524) 94.08119
Residuals 4524 1052.59216 0.23267 NA NA Prob > F 0.00000
R-squared 0.02037
Coefficients Adj R-squared 002016
Estimate  Std.Error tvalue Pr(>[t]) Residusl Std.Error 048236
(Intercept) 0.30354 0.01126  26.95680  0.00000 AIC 6248.68628

GenderMale  0.14165 0.01460 9.69955  0.00000
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ex. UC Berkeley admission - Model 1 and Model 2

Model summary for model 2

ANOVA Model Summary
Df Sum Sq Mean Sq Fvalue Pr(>F) Num of obs 4526,00000
Gender 1 21.88973  21.88973  111.23508  0.00000 F(6,4519) 156.84986
Department 5 16330727 3266145 16597281  0.00000 Prob>F 0.00000
Residuals 4519  889.28488 0.19679 NA NA R-squared 0.17236
Adj R-squared 0.17126
Coefficients Residual Std.Error 044361
Estimate  Std.Error tvalue  Pr(>Jt]) AIC 549563016

(Intercept) 0.66045 0.01989 33.20884  0.00000

GenderMale -0.01843 001537 -1.19912  0.23054
DepartmentB  -0.01033 002342 -0.44124  0.65906
DepartmentC ~ -0.30317 002217  -13.67247  0.00000
DepartmentD ~ -0.31110 002213 -14.05991  0.00000
DepartmentE  -0.40271 002492 -16.15789  0.00000

DepartmentF  -0.58640 002275 -25.77875  0.00000
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ex. UC Berkeley admission - Model 1 and Model 2

Comparison of two models

Comparison Model

Model Offset  Res.df  Sum.sq R-squared  AdjR-squared  AIC BIC
1 Admit~Gender NA 4524 105259216  0.02037 0.02016 6248.68628  6267.93906
2 Admit ~Gender+Department ~ NA 4519 889.28488 0.17236 0.17126 549563216  5546.97291
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Chapter 2. GLMs

Five components of GLM
@ the response Y
@ the linear predictor n = Xp
@ the distribution of y (exponential dispersion family)
o the link function g(u) = n with u = E(Y)
@ a prior weight 1/¢
Likelihood Principle(Birnbaum, 1962)

@ The classical likelihood function contains all the information in the observed data
about the fixed parameter, provided that the assumed stochastic model is right.
Thus, if the model is correct, likelihood captures all the information in the data for
analysis.

o Model checking is possible.
@ All necessary inferential tools can be derived from the likelihood.

@ In GLMs, the likelihood inference can proceed via IWLS equations. Also, the least
square methods in regression becomes the ML procedure in GLMs.
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Exponential Dispersion Family

@ Log-likelihood

07y — b(6

lOgL(05¢1y) = yT() + C(y’¢)
@ b(#) is cumulant generating function.
@ Mean : u=E(Y) = b'(0)
@ Variance : Var(Y) = ¢b"(6)
Distribution E(Y) 0 o) V(w) Var(Y) b(9)
N(u, o?) I I a? 1 o? 6?/2
Poi (1) Iz log 11 1 jz ju exp(0)
Bin(n, p) p=np log t 1 M M nlog(1 4 exp(0))
Gamma(a,f) p=9% —1/u =1 w2 op? = & —log(—9)
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IWLS for likelihood inference

1. Specify a starting value for 3, say 5 (k = 0)

2. Compute adjusted linear predictor
n(k+1) _ Xﬁ(k) and N(kﬂ) _ gfl(n(kﬁ»l))

3. Compute adjusted dependent variable

(k+1)

_ (k1) Oy ( (k+1)>
Si=n; =+ Yi —
aM’('k-¢—1)

4. Fit the weighted linear regression s = X + € with € ~ (0, W(k+1)) where

e . 8n’(k+1) 2
w = dlag W Var( \/1) .

5. Solve (X7 W(kH)X)B — XTwktg
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IWLS for likelihood inference

6. Put estimated coefficient as
ﬂ(k+1) _ (XT W(k+1)X)71XTW(k+1)S

7. Repeat step 2~6 for k = 0,1,2,--- until convergence.
8. After convergence, report 3 and Var(B\) = (XTWX)~! where

W = diag ((gZ:) Var(Y;)) .

— IWLS is the extension of least squares method to GLMs!

Homework : You may derive IWLS from the likelihood.
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Residual
o Unscaled deviance : D = 2¢(¢(y;y) — l(p; y)) =D d;

@ Unscaled deviance components : d;

Distribution  Deviance component d;

Normal (yi — mi)?

Poisson 2[y; log(yi/mi) — (vi — k)]

Binomial 2 [y,— log(y:/1ti) — (m; — yi) log '""_ﬁ}
mi—p;

Gamma 2[— log(yi/mi) + (vi — i)/ 1ui]

o Standardized deviance residuals : rp; = sign(y; — ;) \/di/
@ Pearson residuals : rp; = (yi — i) / v/ ¢V (1)

e D* =>"r}; is the log likelihood ratio statistic.

o Pr=3%" rﬁﬂ- is the Pearson chi-squared statistic.
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Hat Values

@ GLMs have the hat matrix
H=X(X"WX) 'X"W

where W = diag ((2—2’;_)2Var(Y,-)>.
@ The diagonal elements of H are the hat values here denoted by g;.
@ Studentized residuals adjust for the hat values and are obtained as
ri

\/1—q,'.

@ We can use the unscaled deviance to estimate the dispersion parameter

-~ > di D

C=S1-a) s
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ex. Crack growth - crackgrowth(page72).csv

o Crack-growth data from experiment where crack length in inches are measured on a
compact tension steel test (CT test) operated in different laboratories (Hudak et al.,
1978).

y : increment of crack length (inch)
crack0 : initial value of crack length (inch)
cycle : number of cumulative loading cycles (10° cycle)

specimen : 21 metallic specimens

Model : n = logu = o+ 8 crackO

ccccc
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ex. crackgrowth - gamma GLM

GLM Distribution
Model gamma v
y ~crackO

Link Function

log v
Response Variable

y -

Variable Selected

ID crackO
Y

specimen

cycle

phi

lambda

®®
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ex. crackgrowth - gamma GLM

Model summary

Model Summary 1 Model Summary 2
data Num of obs 241.00000
Family Gamma Res. deviance(df=239) 15.88977
Link log Null deviance(df=240) 69.05413
Optimization IWLS Log likelihood 71081788
Numof iteration 5 AIC -1415.63576
BIC -1405.18137

Coefficients
Estimate  Std.Error tvalue Pr(>[t])
(Intercept)  -5.85121 010585  -55.28034  0.00000

crackO 256932 0.09366 2743140  0.00000
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ex. crackgrowth - gamma GLM

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. Train - train(pagel03).csv

@ Train-related accidents data in the UK between 1975 and 2003 (Agresti, 2007).
X : number of years since 1975
y : number of accidents between trains and road vehicles

t : distance of train travel (million kilometer)

logt : logarithm of t

Model : n = log(u) = log(t) + a + Bx
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ex. Train - Poisson GLM

Log-linear Model

Model

¥~X

Response Variable

Y
Variable Selected
Y X
t
id
logt

Distribution

poisson v

Link Function
log -
v Offset Variable

Offset Variable

logt -

79 /569



ex. Train - Poisson GLM

Model summary

Model Summary 1

Family
Link

Optimization

data

poisson

log

IWLS

Numofiteration 5

Coefficients

(Intercept)

X

Estimate

-4.21142

-0.03292

Std. Error

0.15892

0.01076

zvalue

-26.50040

-3.05955

Model Summary 2
Num of obs
Res. deviance(df=27)
Null deviance(df=28)
Log likelihood
AIC

BIC

Pr(>|z|)
0.00000

0.00222

29.00000

37.85280

47.37588

-64.75962

133.51925

136.25384
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ex. Train - Poisson GLM

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. Crabs - Crabs.csv

o Data from a study of nesting horseshoe crabs, which investigated factors that affect
whether the female crab had any other males, called satellites, residing near her
(Jane Brockmann, 1996).

sat : number of satellites

y : indicator of whether a female crab has any satellites
weight : weight (kg)

width : shell width (cm)

color : 1(medium light), 2(medium), 3(medium dark), 4(dark)
spine : 1(both good), 2(one broken), 3(both broken)

When p=Prob(Y=1),
Model : 1 = log ({£;) = a+ 3 width
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ex. Crabs - logistic GLM

Logit
Model

y ~width

Response Variable

Y

Variable Selected
crab width
sat

Y

weight

color

spine

Distribution

binomial

Binomial Denominator
Link Function

logit
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ex. Crabs - logistic GLM

Model summary

Model Summary 1 Model Summary 2
data Num of obs 173.00000
Family binomial Res.deviance(df=171)  194.45266
Link logit Null deviance(df=172)  225.75852
Optimization IWLS Log likelihood -97.22633
Num of iteration 4 AIC 198.45266
BIC 204.75925

Coefficients
Estimate Std. Error zvalue Pr(>|z])
(Intercept)  -12.35082 262872  -4.69842  (0.00000

width 0.49723 010174  4.88748  0.00000
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ex. Crabs - logistic GLM

Model checking plots

Standardized Residual

Studentized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Snoring - snoring.csv

o Data based on an epidemiological survey to investigate snoring as a possible risk
factor for heart disease (P.G. Norton and E.V. Dunn, 1985).

yes : number of people who have heart disease
no : number of people who don't have heart disease

x : snoring level. O(Never), 2(Occasional), 4(Nearly every night), 5(Every night)
n :yes + no

When p=Prob(Y=1),
Model : n = probit(p) = ®~!(p) = a + Bx

Probability

2 3 4
Snoring

@
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ex. Snoring - probit model

Probit Model

Model

cbind(yes,n-yes)~x

Response Variable

yes

Variable
yes

no

n

Selected
X

Distribution

binomial

« Binomial Denominator

Binomial Denominator

n

Link Function

probit

# Comparison With Other Model
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ex. Snoring - probit model

Model summary

Model Summary 1 Model Summary 2
data Num of obs 4.00000
Family binomial Res. deviance(df=2) 187156
Link probit Null deviance(df=3) 65.90448
Optimization IWLS Log likelihood -11.06206
Num of iteration 4 AIC 2612412
BIC 2489670

Coefficients
Estimate Std. Error zvalue Pr(>|z])
(Intercept)  -2.06055 0.07017  -29.36651  0.00000

be 0.18777 0.02348 7.99686  0.00000
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ex. Snoring - probit model

Model checking plots

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Snoring - logistic model

Distribution
LOgIt binomial v
Model . . .
¥ Binomial Denominator
cbind(yes,n-yes)~x . ) .
Binomial Denominator

n -
Response Variable
Link Function
yes -

logit A
Variable Selected
yes P ¥ Comparison With Other Model
no

n
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ex. Snoring - logistic model

Model summary

Model Summary 1 Model Summary 2
data Num of obs 4.00000
Family binomial Res. deviance(df=2) 2.80891
Link logit Null deviance(df=3) 65.90448
Optimization IWLS Log likelihood -11.53073
Num of iteration 4 AIC 2706147
BIC 25.83406

Coefficients
Estimate Std. Error zvalue Pr(>|z])
(Intercept)  -3.86625 0.16621  -23.26061  0.00000

be 0.39734 0.05001 7.94504  0.00000

91 /569



ex. Snoring - comparison of two model

Comparison Model

Model Distribution  Link Offset  Res.df Resdev  AIC BIC
1 chind(yes,n-yes)~x  binomial probit  NA 2 187156 2612412  24.8967
2  chind(yes,n-yes)~x  binomial logit NA 2 280891 27.06147  25.83406
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ex. Tennis - Tennis.csv

o Results of matches among five professional tennis players between January 2014 and
January 2018 (Agresti, 2019).

@ The fitted model provides a ranking of the players.

@ It also estimates the probabilities of win and of loss for matches between each pair
of players.

[1; : probability that player i is the victor when i and j play

Mj =1 —T; (ties cannot occur)

Model : log <%U,) = log (1117;/_'”) =B — B

Loser
Winner Djokovic  Federer Murray Nadal Wawrinka
Djokovic - 9 14 9 4
Federer 6 - 5 5 7
Murray 3 0 - 2 2
Nadal 2 1 4 - 4
Wawrinka 3 2 2 3 -
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ex. Tennis - Bradley-Terry model

Distribution
GLM

binomial -
Model

¥ Binomial Denominator
chind( nij, N -nij) ~

-1+Djokovic+Federer+Murray+Nadal+

- Binomial Denominator
Wawrinka P
N -
Response Variable
nij - Link Function
logit -
Variable Selected
nij Djokovic
nji Federer # No Intercept Model
N Murray
Nadal
Wawrinka

®®

94 /560



ex. Tennis - Bradley-Terry model

Model summary

Model Summary 1 Model Summary 2
data Num of obs 10.00000
Family binomial Res. deviance(df=6) 439581
Link logit Null deviance(df=10) 26.89600
Optimization IWLS Log likelihood -13.02031
Numofiteration 4 AlC 34.04062
BIC 35.25096

Coefficients
Estimate  Std.Error zvalue Pr(>|z])
Djokovic 117612 0.49952 2.35449 001855
Federer 113578 0.51095 222291 0.02622
Murray -0.56852 0.56833 -1.00033 0.31715

Nadal -0.06185 051487 -0.12013  0.90438
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ex. Tennis - Bradley-Terry model

Model checking plots

Residuals vs Fitted

|Residuals| vs Fitted
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Standardized Residual
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ex. Tennis - Bradley-Terry model

Prediction

Djokovic ~Federer ~Murray Nadal Wawrinka nij nji N pred pred95LL  pred95UL  StudentResidual leverage cook

1 1 -1 0 0 0 9 6 15 7.65125 472234 10.53471 118714  0.65291 0.65754
2 1 0 -1 0 0 14 3 17 1447168 11.66484 15.93648 -0.45255 0.51890  0.05794
3 1 0 0 -1 0 9 2 11 852732 6.34468 9.86904 0.46354  0.43005 0.03858
4 1 0 0 0 -1 4 3 7 5.34975 3.84374 6.27307 -1.35599 0.31470  0.24199
5 0 1 -1 0 0 5 0 5 4.23048 325190 4.71009 1.44445 0.19900  0.07052
6 0 1 0 -1 0 5 1 6 4.60862 327796 5.40656 0.46478 0.28480  0.01995
7 0 1 0 0 -1 7 2 9 6.81214 480179 8.05023 0.19572 043232 0.00715
8 0 0 1 -1 0 2 4 6 225585 1.04295 3.79843 -0.28203 0.40560  0.01335
9 0 0 1 0 -1 2 2 4 1.44631 0.62708 253228 0.67417 0.29825  0.05027
10 0 0 0 1 -1 4 3 7 3.39179 1.78650 5.04399 0.62843 0.46347  0.08516
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Chapter 3. H-likelihood

Introduction

@ The h-likelihood method can fit rather complex models in an elegant manner.

@ In contrast, classical likelihood software may not be as flexible, whereas Bayesian
MCMC approaches allow fitting these models but at the expense of more

computation time and requires to assume priors for fixed parameters.

@ In this chapter we define the h-likelihood and provide insight to inference and
predictions based on the h-likelihood. We introduce the extended likelihood principle
underlying the h-likelihood framework and show how it is related both to classical

likelihood and Bayesian inference.
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Introduction

Five important points are made:

@ Inference about random effects can be made using the h-likelihood, whilst classical
likelihood cannot give any information about the random effects,

@ H-likelihood inference of random effects takes into account the uncertainty in
estimating the fixed effects, whereas empirical Bayes (EB) estimation of random

effects assumes known values of the fixed effects,
@ Model checking is possible for all parts of the model,
o All necessary inferential tools can be derived from the h-likelihood, and

@ The h-likelihood can be used for predictions of unobserved random variables such as

future outcomes.
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Example for prediction of future outcome

@ Suppose that we have the number of epileptic seizures in an individual for five
weeks, y = (3,2,5,0,4).
@ Suppose also that these counts are i.i.d. from a Poisson distribution with mean 6.

o Here, = (3+2+5+ 0+4)/5 = 2.8 is the maximum likelihood estimator of 6,
which maximizing the Fisher likelihood fy(y). The inferences about 6 can be made
by using the likelihood.

@ Now we want to have a predictive probability function for the seizure counts for the

next week v.

@ Then, because fy(v = ily) = fo(v = i), the plug-in technique gives the predictive
distribution for the seizure count v of the next week:

fa(v =ily) = fy(v = i) = exp(—2.8)2.8'/i!
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Example for prediction of future outcome

@ Pearson (1920) pointed out the limitation of this Fisher likelihood using the plug-in
method because it cannot account for uncertainty in estimating 6.

@ This plug-in technique is a kind of empirical Bayes method. With Jeffreys' prior,
7(0) « 07Y/2(1 — 0)~Y/2, the resulting marginal posterior

p(vly) = / fo(vly)m(6)d6

gives a predictive probability with higher probabilities for larger y. This Bayesian
procedure handles uncertainty caused by estimating 6.

@ However, it depends upon the choice of a prior and it might be difficult to justify
why the choice of Jeffreys’ prior is the right choice.
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Example for prediction of future outcome

@ Here the h-likelihood including v is proportional to

Now, O(v) = (342 +5+40+4+ v)/6 is the potential ML estimate if v is observed.

@ Then, the normalized profile likelihood fé(v)(3727570747 v) gives the predictive

probability p(v|y), almost identical to Pearson’s but without assuming a prior on 6.

This is a method to eliminate 0 from the predictive probability fo(v|y).

@ This example shows that standard methods for likelihood inferences can be used for

the prediction problem by using the h-likelihood without assuming a prior on 6.
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Example for prediction of future outcome
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Figure 3.3 Predictive density of the number of seizure counts:. Plug-in method
(A), Bayesian method (o) and h-likelihood method(+ ).
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Likelihood Inference for Random Effects

o We consider extended statistical models that consist of three types of objects, data
y, parameter (fixed unknowns) 6 and unobservables (random unknowns) v. Then
statistical inferences need to be made for both unknowns 6 and v, based upon the
observed data y.

o Consider a linear mixed model for i =1,--- ;mand j=1,--- n;
Yip =X} + vi + ey, (1)

where 3 is the vector of fixed effects and vi~ N(0,\) are i.i.d. random effects,

ej ~ N(0,¢) is an i.i.d. random error.

@ In this model, there are two types of unknowns; fixed unknowns 6 = (3,4, A) and

random unknowns v = (vi,- -+, vm)'.
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Likelihood Inference for Random Effects

@ The linear mixed model (1) may be written in matrix form as
y=XB+Zv+e. (2)

@ In the classical likelihood setting the model for the data generation process fy(y) is

given by the density function of a multivariate normal distribution
N(XB,A\ZZ" + ¢I)
with the corresponding marginal likelihood
L8N by) = @rlV]) dep(- 20 - XB) VI - XB)), ()

where V = ZZ" )\ + 1.

o This marginal likelihood can be used to estimate and make inference about the fixed
parameters 3, A and ¢. However, the random effect v is not included so that the
classical likelihood does not directly give inference about the random effects.

105 /569



Likelihood Inference for Random Effects

@ Lee and Nelder (1996) proposed the use of the hierarchical likelihood

H(8,v;y) = fo(y[v)fa(v) = fo(v, y), (4)

where fy(v, y) is the joint density of v and y.

@ It is related to the conditional distribution of v given y as
H(6,v;y) = fo(v,y) = fo(y)fo(vly). (5)

@ Bjgrnstad introduced the extended likelihood principle where all information in the
observed data for parameters 8 and unobservables v are in the extended likelihood,
such as the hierarchical likelihood.

@ Lee and Nelder (1996) found that the scale of v is important for meaningful
statistical inference; they called the extended likelihood in a particular scale the
hierarchical likelihood and its logarithm is referred to as the h-likelihood.
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Likelihood Inference for Random Effects

@ For the h-likelihood, there is a close connection both to classical frequentist
inference and Bayesian inference.

o In the absence of random effects, the hierarchical likelihood is the same as the classical
likelihood, i.e. H = fy(y).
o In the absence of fixed parameters 6,

H(viy) = f(y)f(vly)- (6)

which is proportional to the posterior f(v|y) used for inference in Bayesian statistics
where f(v) is a prior.

@ However, in hierarchical models such as linear mixed models, v is random and f(v)
is part of the model. To make this distinction clear, we call f(v|y) the predictive

density (or predictive probability) for random effect v.

@ In this book, the conditional likelihood fy(v|y) is called the predictive probability to
highlight its probability property

/fg(v|y)dv =1
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Likelihood Inference for Random Effects

@ Lee and Nelder (1996) proposed that the random effects could be estimated by
finding the mode of the joint density fy(y, v).

@ Using the mode of H can simplifies the computations drastically compared to
MCMC. However, it requires an appropriate scale of v because the joint density will
depend upon the transformation of v.

@ For example, the mode of the joint likelihood is not invariant to transformation of v
and different conclusions will be drawn depending on the scale of v chosen when the
mode is used for inference about the random effects.

@ The novelty of Lee and Nelder's method (1996) is to limit the possible joint

likelihoods to a given scale of v, resolving the invariance problem.
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Likelihood Inference for Random Effects

@ For inference about fixed parameters, we use the marginal likelihood derived from
fo(y, v) by integrating out the random effects

fily) = / foly. v)dv. @)

This is a classical Fisher likelihood, so we can obtain the ML estimator for 6 by
maximizing fy(y).

@ For estimating variance components, Patterson and Thompson (1971) suggested a
REML approach to improve the estimation properties with reduced bias. REML for
linear models can be extended to GLMs through a more general specification as a

conditional likelihood fg(y|B) where f3 is the estimator for the mean parameters.
(Smyth and Verbyla, 1996; Lee and Nelder 2001).
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Likelihood Inference for Random Effects : Linear mixed models

@ Recall the linear mixed model,

y=XB+Zv+e

with v ~ N(0, Al) and e ~ N(O, ¢I).

@ The marginal likelihood is given by
1 1
log(fy(y)) = log / H(0, viy)dv = = log(det(2rV)) — S (y = XB)T V™ }(y — XB)

where V.= ZZT\ + 1.

@ From the marginal likelihood, we can obtain the ML estimator
B=(XTVviX)“IXTvly.

o REML estimator equations for variance components is obtained from

l08(fo(417)) = — 5 log(det(2nV)) — S(y = XB)TV "1y - XB)

1
~5 log(det(XT V~1X))
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: Linear mixed models

Likelihood Inference for Random Effects :

@ The h-likelihood given by

log(faly. v)) = log(fa(y|v)) + log(fs (1))
~— Jlog(2r0) — 5u(y = XB— 2v)(y ~ XB - 2v)

2

VTV

- = Iog(27r)\) N

where n is the number of observations and m is the length of v

@ The joint maximization for B and v gives Henderson's mixed model equation

1X7X X'z B\ _ [ Xy
127X 1zZ7z 413 v) \ 3Z7y )’

which gives the BLUP for v and the ML estimator for 3.
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Deriving Sample Variance from the REML Likelihood

@ Suppose yi1, y2, ..., yn are i.i.d. observation from N(,u,a2) where both parameters are
unknown.

o The ML estimator for y is the sample mean i = £ >~" | y; ~ N(u,0°/n), whereas

n

. L. . . . A2 1 =12
direct maximization of logL gives the biased estimator 6% = 2 > (y; — y)*.

@ So we consider the REML likelihood

fyla) = fly) (ﬁ) exp(—52z > (vi — 1)?)
=27 = . 2
f(i2) \/271_202/") EXP(—Q(U%/H) (% Zi:l Vi — N) )

(o) (23’ KZ(””)2> - (Z”"’J D
1

112/569



Deriving Sample Variance from the REML Likelihood

@ lIgnoring constant terms, the REML log-likelihood becomes

n—1 1 |w _
logLrem = — 5 log(o?) — 252 [ E (vi — Y)zl
=1

o By maximizing logLrem., we obtain the REML estimator 6° = -2 > (y; — y)*.

@ Hence we can see that the REML estimator adjusts for the degrees of freedom.

@ The two estimators will be similar for large n, however, when the number of mean
parameters (i.e. the number of parameters included in the mean part of the model)

grows with sample size, the two estimators can be very different.
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Extended Likelihood Principle

@ Birnbaum (1962) proved that the classical likelihood function contains all the
information in the observed data about the fixed parameter.

@ Bjgrnstad (1996) extended this concept and showed that all the information in the
data y for parameters 6 and unobservables v is in the extended likelihood.

@ This means that inference about fixed parameters and unobservables, using the
information only in the data, requires the extended likelihood function and nothing
else. However, these likelihood principles do not show how the information in the

data can be retrieved from the likelihood.
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Extended Likelihood Principle

@ In the absence of v, the extended likelihood becomes the marginal likelihood. Fisher
advocated the use of ML estimation and established the underlying theory.

@ In the absence of 0, we see that the extended likelihood gives Bayesian posterior and
its use has been advocated by Bayesian statisticians.

@ This gives an insight on how to make inferences in at least these two extreme cases,
so that we may develop a procedure which gives identical inferences to that using
the marginal likelihood for 6 and that exploiting the property of the predictive
probability (posterior) for v in these two extreme cases.

@ In the context of HGLMs, Lee and Nelder (1996,2005) advocated the use of the
h-likelihood and presented how information in the data for unobservables and
parameters can be retrieved from it under the extended likelihood framework for all

three types of objects (6, v and y).
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Extended Likelihood Principle

o Similarly as for classical likelihood inference, we have a model for the data
generation process and a corresponding likelihood.
@ Stochastic Model:

o Generate an instance of the random quantities v from a probability function fy(v).
o With v fixed, generate an instance of the data y from a probability function fp(y|v).
o The combined stochastic model is given by the product of fy(v)fy(y|v).

o Statistical Inference:

o Given y, we make inferences about 6 by using the marginal likelihood L(6;y) = fy(y).
o Given 0, we make inferences about v by using the conditional likelihood

L(0,vivly) = fo(vly). (8)
o The extended likelihood for unknowns (v, 6) is given by
L(0,viv,y) = L(0;y)L(0, v; vly), 9)

where

L(07 v; Vry) = f9(vry)7
L(0;y)L(0, v vly) = fo(y)fo(vly).
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Extended Likelihood Principle

The connection between these two processes is given by
fo(y)fo(vly) = L(0, v v,y) = fo(v,y) = fo(v)fo(y|v). (10)

In the extended likelihood framework, v appears in stochastic model as random

instances, but it appears in statistical inference as unknowns.

From (9), we see that the extended likelihood is the product of two likelihoods, the
Fisher likelihood f3(y) and the conditional likelihood f5(v|y).

In likelihood theory the product of two likelihoods is a way of gathering information
from the two independent source of data (Chapter 1).

This is straightforward to note the close connection between the Fisher likelihood

and the h-likelihood, because it uses the Fisher likelihood for inferences about 6.
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Definition of the h-likelihood

@ For continuous v, Lee and Nelder (1996) proposed the use of the hierarchical

likelihood, an extended likelihood limited to a pre-defined scale of v.

@ Suppose we have two models for the random effects in a linear predictor as
m=XB+v and m = X8+ exp(v).

@ Then we have two alternative extended likelihoods based on two different scales of

random effects:
Li(0,v;y,v) = fa(ylm)fa(v) and La(0,v;y,v) = fo(ylm)fo(v).  (11)

@ The modes of these two likelihoods differ and the question is which scale of random
effects to use for statistical inferences.

118 /569



Definition of the h-likelihood

@ We define the strong canonical scale of v such that the random effects v carry no
information about the fixed effects 0 as

exp{{(61, ¥(01);y, v)} _ for(y)
exp{l(62, V(62); y,v)}  fa,(y)

where 6; and 6, are two sets of 6 values and ¥(61) and ¥(62) are the modes of
£(01,v;y,v) and (62, v; y, v), respectively. (Lee, Nelder and Pawitan, 2017).

@ The h-likelihood is defined as the extended likelihood having v on a canonical scale.
This means that the marginal likelihood gives the same mode estimators about fixed
effects as the h-likelihood, so that there is no conflict between classical likelihood

inference and h-likelihood inference.

@ For example, in linear mixed models, v is on a canonical scale to 8 which implies
that joint maximization of h with respect to 3 and v gives the MLE for 8.

@ In HGLMs, the h-likelihood is defined under a weak canonical scale where the

random effects combine additively with the fixed effects in a linear predictor.
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Definition of the h-likelihood

@ From the linear predictor 11 above, we see that L1(6, v]y, v) is the h-likelihood,
which gives a consistent inference framework (Lee, Nelder and Pawitan, 2017)

o The likelihood Li(0, v;y, v) = fo(y|m)fo(v) is called a hierarchical likelihood, as the
random effects enter linearly in the linear predictor.

@ An important difference between transforming fixed versus random effects is that a
transformation of random effects requires the need to multiply the density function
for the random effects with a Jacobian.

@ In that sense, when v is discrete, there is no Jacobian involved so that all extended
likelihoods are the h-likelihood (Lee and Bjgrnstad, 2013).
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Laplace approximation for the integrals

@ For the linear mixed model both the marginal likelihood and REML likelihood are
straight forward to derive, but for most other distributions the integral for the

marginal likelihood has no analytical form.

@ Numerical integration is infeasible if the number of integrands is large and MCMC
algorithms are often too slow. As an alternative, we use Laplace approximation in

h-likelihood approach.

o The (Ist-order) Laplace approximation for some integral [ exp[f(x)]dx is

/ exp[f(x)]dx ~ {'_;raafx(zx) zexp[f(x)]}

where xp is a global maximum of f(x).

X=X0
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Laplace approximation for the integrals

o For the marginal likelihood, the Laplace approximation around the fitted random

effects is

1
2

f9(y> V)

_ 9% log(fy(y,v))

/fo(% V)dV=/exp(log(f9(y, v)))dv ~ ‘2{;

where ¥ is obtained from the mode of f(y, v).

o Applying a Laplace approximation to eliminate random effects together with a
quadratic approximation around 3 on the REML likelihood fg(y\fi‘) to eliminate fixed

1
2
fg(y7 V)}
8°h 32h

where I(B,v) = — ﬁ aggv with h = log(f(y, v)).
ovop a2

effects, we get

B=pB,v=v

fyIB) ~ .. ~ {"(Z)
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Adjusted profile h-likelihood

o To this end, Laplace approximation for the log-marginal likelihood is specified as an
adjusted profile h-likelihood (APHL)

pv(h) = [h— %log(ll(V)l/%)]lv:o (12)

where I(v) is the information matrix for the random effects, and ¥ is the maximum

h-likelihood estimator of the random effects using h as objective function.

@ The approximation for the log-REML likelihood log f(y|3) can also be expressed as
an APHL:

1
ps.v(h) = [h — Slog(|/(B, v)|/2m)]l 54— (13)
where I(3, v) is the information matrix for the fixed and random effects.

@ The estimates of fixed effects and dispersion parameters are computed by

maximizing these two likelihoods.
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Street magician

Here an example is presented to illustrate the fundamental idea of likelihood inference
and how it may differ from Bayesian inference.

@ A street magician has a small bag with a number of dice. There are two types of
dice in the bag; white and blue. The white are numbered 1 to 6, while the blue have
three sides with 1 and three sides with 2.

@ The magician draws a dice at random from the bag without showing it to you and
rolls the dice, then he claims that the number is 2.
e (a) Which type of dice would you guess he has rolled, a white or a blue?
o (b) The magician lets you bet on the color of the dice. Which odds would you accept?
o (c) Now the magician informed that there are 20 white dices and 10 blue dices in the
bag. What is your guess on the color of dice, which he rolled?
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Street magician

Solution of (a).

@ The likelihood for a white dice is 1/6 and for a blue dice is 1/2. Therefore, as a
likelihoodist, the maximum likelihood guess is that the dice is blue.

@ Let Y be the number of dice and let C be a colour of dice and ¢ be a realized value
of the colour of dice. Then, the likelihood ratio is

P(Y =2|C =blue) _1/2
P(Y =2[C = white)  1/6

3.
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Street magician

Solution of (b).

@ To be able to make a probability statement we need to know the distribution of the
two types of dice in the bag. This is unknown however, which means that for a
likelihoodist the odds cannot be computed.

o A Bayesian would guess the distribution and thereby compute the odds

P(Y = 2|C = blue)w(C = blue) 7(C = blue)  P(C = blue|Y = 2)

P(Y = 2|C = white)r(C = white) = ~n(C = white) = P(C = white]Y =2)’

Controversy is how to determine 7(C = blue) and 7(C = white).
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Street magician

Solution of (c).

@ The problem can be solved using a probabilistic argument, but here we also show
that both a classical likelihood ratio and the ratio of extended likelihoods can be
used to draw the same conclusion.

@ Let ¢ be a realized value of the colour of dice such that
L(c = blue) = P(C = blue) =1/3 and L(c = white) = P(C = white) = 2/3.

Then, the ratio of extended likelihood is

L(c = blue, Y = 2) P(Y = 2|c = blue)L(c = blue)

L(c = white, Y =2) ~ P(Y = 2|c = white)L(c = white)
_1/2x1/3 3

T1/6x2/3 2

Thus, the maximum extended likelihood guess is that the dice is blue.

127 /569



Street magician

@ Furthermore, we can compute the conditional likelihood

(¢ = blue, Y =2)
L(Y =2)
P(Y = 2|c = blue)L(c = blue)
= P(Y = 2|c = blue)L(c = blue) + P(Y = 2|c = white)L(c = white)
P(Y = 2|c = blue)
~ P(Y =2|c = blue) + P(Y = 2|c = white)L(c = white)/L(c = blue)
1/2x1/3 3

T1/2x1/3+1/6x2/3 5

L(c = bluely =2) = L

and

L(c = white|Y = 2) = %

o We call L(c = white|Y = 2) the predictive probability.
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Street magician

@ Note that the conditional likelihood L(c = blue|Y = 2) depends upon the likelihood
ratio L(c = white)/L(c = blue), so that it is invariant with respect to the

transformation of data and parametrization.
o Furthermore,

L(c = blue, Y = 2) L(c =bluelY =2) 3

[(c = white, Y =2) _ L(c = white] Y =2) 2’

i.e. the mode of the conditional likelihood L(c|Y = 2) is the same as the mode of
the extended likelihood L(c, Y = 2).

@ In (c) we have an information on P(C) (part of the model), while in (b) no
information is available on P(C), so that we need a guess 7(C).
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H-likelihood and empirical Bayes

@ Inference on random effects have important practical use in predictions. A typical
example is for instance if there are repeated observations on patients’ hospital visits
and the life time of these patients are to be predicted. This would require a survival
analysis including random effects for patients and the uncertainty in the predictions
will include the uncertainty of the fitted random effects.

@ When 6 is known, we can make inferences about v using fp(v|y). However, 6 is
unknown, so that we may make inferences using f;(v|y) with 0 being the ML
estimator. This is the so-called EB approach, which gives consistent estimation for

predictive probability because 0 is consistent.
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H-likelihood and empirical Bayes

@ However, in finite samples this approach often has a poor inferential performance
because it cannot account for uncertainty, caused by estimating 0; especially when
the number of observations is low and the number of parameters in 0 is large.

@ Such an uncertainty about 8 is included in fo(y), and can be used for inference on
random effects (Lee and Nelder, 1996, 2001).

@ Thus, an important question is how to eliminate the nuisance parameter 8 from the
predictive probability fy(v|y), using the information on 6 in the likelihood f(y).

@ Next slide illustrates the difference using a linear mixed model as an example.
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H-likelihood and empirical Bayes

@ For a linear mixed model
y=XB+Zv+e

v~ N(0, )
e ~ N(0, ¢l
the h-likelihood is

log(f3(y, v)) =log(fa(y|v)) + log(fs(v))
—— Jlog(2r0) — 5 (v~ X8~ 2v) (y ~ XB — 2v)

- = Iog(27r)\) N

where n is the number of observations and m is the length of v.

132 /569



H-likelihood and empirical Bayes

@ In a linear mixed model, estimates of both 8 and v can be computed by maximizing
the h-likelihood.

@ The score equations 2% = 0 and @ = 0 give Henderson's mixed model equations:

o8

1yT 1yT 1yT
(?XTX 1¢TX21><ﬂ)_<?XTy>
$ZX EZZ'HX v EZy

and the information matrix (computed from the second derivatives) is
< IX'x  IxTz )
17T 17T 1 ’
¢Z X ¢Z Z+15

@ The above equation is fitting algorithm of regression model

(5)-(2 1)(2)(2)

where e; ~ N(0, ¢l) and e2 ~ N(0, ). This is called data augmentation method.
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H-likelihood and empirical Bayes

@ This is different from an EB approach f;(v|y) where the information matrix

1.7 1
(d)z z+|/\>

would typically be used for inference on the random effects ignoring the uncertainty
in the estimates of f‘)’

@ A more thorough exposition is found in Section 5.4 of Lee, Nelder and Pawitan
(2017) showing that the h-likelihood gives correct inference.
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Prediction of random effects

@ Because the Fisher likelihood fy(y) does not involve v, the other component, the
predictive probability, fo(v|y) carries all the information in the data about the

unobservables.

@ Thus, the prediction of random effects can be made via the EB method using the

estimated predictive probability (or posterior)
p(vly) = fo(vly) = =(vly,0),

where 0 is the usual ML estimator (Carlin and Louis, 2000).

@ However, using f3(v]y) to make inferences about v is naive and Bjgrnstad (1990)

has shown how badly it performs in measuring the true uncertainty in estimating v.
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Prediction of random effects

@ Note that maximization of the h-likelihood

h =log fo(y|v) + log fy(v) = log fo(v|y) + log fo(y)

yields EB-mode estimators for v, without computing fy(v|y) = fo(y, v)/fa(y).

@ However, the Hessian matrix (i.e. matrix of second derivatives) based upon fy(vl|y)
gives a naive variance estimate for the prediction ¥ because it does not properly
account for the uncertainty caused by estimating 6, that is in fy(y).

@ The h-likelihood considers both components and give proper estimators for random
effects and their variance estimators. However, the estimation of the first two

moments are not enough for accurate inferences of random effects if it is not normal.
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Prediction of random effects

@ The previous example shows that ¥ is neither a consistent estimator of v nor follows
the asymptotic normal distribution. Thus, interval estimations of random effects
differ from those of fixed effects.

o Note that the predictive probability f3(v|y) gives an asymptotically correct inference.
Thus, it is necessary to have a finite sample adjustment to account for information
loss caused by estimating 6. This can be generally done.

o Lee and Kim (2016) showed that

p(vly) = E;(f(viy)) = / F(vIy)F(B = t)dt = / F(vly)e(0 = t)dt,

where ¢(0) is the confidence density in Chapter 1 of Lee, Nelder and Pawitan (2017).
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Prediction of random effects

@ Because the bootstrap distribution gives an estimate of confidence density, we can
have the bootstrap method to get the predictive probability

B
1
P(vly) = 5 D for (vly),
j=1

where 07, ..., 0% are the bootstrap replicates of 0.

@ In complex models it may not be easy to design the bootstrap scheme, so that it is
convenient to generate the bootstrap replicates of 6 from the asymptotic normal
distribution of 8 or the normalized likelihood.

@ Via a simulation studies, Lee and Kim (2016) demonstrate that bootstrap methods
provide excellent prediction intervals for future random effects, including the
prediction of future outcomes in the front.
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ex. Epilepsy - epilepsy(page66).csv

o Longitudinal data from a clinical trial of 59 epileptics (Thall and Vail, 1990)

y : seizure counts during 2-week periods before each of four visits to the clinic
T : 1(new drug), O(placebo)

B : logarithm of the average number of epileptic seizures recorded in the 8-week period
preceding the trial

A : logarithm of age

V : number of clinic visit(a linear trend, coded -3,-1,1,3)
patient : 59 patients

id : 236 data (= 59 patients x 4 clinic visits)
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ex. Epilepsy - epilepsy(page66).csv

Model 1 : Poisson GLM
log pij = Bo + Be;xe + BT, xT + Baxa + Bv;xv + Be,1,xeT
Model 2 : Poisson - normal HGLM (GLMM)
Model 3 : Negative binomial - normal HGLM
Model 4 : Negative binomial - gamma HGLM
Model 5 : Over-dispersed Poisson GLM
Model 6 : Over-dispersed Poisson - normal HGLM

Model cAlC rAIC

Poisson GLM 1647.9 1664.7

Poisson - normal HGLM 1272.7 1350.5

NB - normal HGLM 1201.1 13105

NB - gamma HGLM 1163.9 1274.8
Over-dispersed Poisson GLM 1321.9 13328
Over-dispersed Poisson - normal HGLM  1219.4  1320.9
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ex. Epilepsy - Poisson GLM

Distribution
GLM poisson -
Model
~ BHT+ARVABT Link Function
' log -

Response Variable

y -
Variable Selected
Y B
patient T
id A
\4
B:T
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ex. Epilepsy - Poisson GLM

Model summary

Model Summary 1

data
Family poisson
Link log
Optimization IWLS

Num of iteration 5

Coefficients

Estimate  Std.Error

(Intercept) ~ -2.79763
B 0.94952
T -1.34112
A 0.89705
Vv -0.02936
BT 0.56223

040729

004356

0.15674

0.11644

001014

006350

zvalue

-6.86893

2179701

-8.55645

7.70381

-2.89502

885456

Pr(>|zl)
0.00000
0.00000
0.00000
0.00000
000379

0.00000

Model Summary 2
Num of obs
Res. deviance(df=230)
Null deviance(df=235)
Log likelihood
AlC

BIC

236.00000

869.90221

2521.75280

-817.94858

164789717

1668.68016
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ex. Epilepsy - Poisson GLM

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. Epilepsy - NB-normal HGLM

HGLM

Model for Mean

y~B+T+A+V+BT +(Llpatient) + (1]id)

Model for Mean
Response Variable
Y

Variable Selected
\4 - B
patient T
id A

\i

BT

Random Effects
patient id

Distribution
poisson

Link Function

log

Distribution for Random effects 1

gaussian

Distribution for Random effects 2

gamma
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ex. Epilepsy - NB-normal HGLM

Model summary

Estimate from Mean Model Likelihood
Estimate  Std.Error t-value p_val exp(LL) exp(UL) -2ML -2RL CAIC  Scaled Deviance df
(Intercept)  -0.95678 001721 -0.55603 057819 001318 11.19914 1279.92327  1306.57605  1201.08843 180.92697 11791727
B 089176 000194 460855 0.00000  1.66945 3.56449
T -0.89496 000568 -157511 011523 0.13418 124444
A 0.38629 0.00506 076377 044500  0.54607 3.96531
v -0.02584 000023 -1.11437 026512 093119 101980
BT 0.30568 0.00294 103815 029920 076228 241768

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
patient  -1.49486 022428 001308  -6.63093
id -1.13867 0.32024 0.00729  -9.06399
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ex. Epilepsy - NB-normal HGLM

Model checking plots

Standardized Residual

Studentized Residual

Residuals vs Fitted

|Residuals| vs Fitted

‘e
3.
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|Studentized Residual|
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ex. Epilepsy - NB-normal HGLM

Model checking plots for random effects

Normal Probabilty Plot Histogram of Studentized Residual

Normal Probabilty Plot Histogram of Studentized Residual

Standardized Residual

Frequency

Standardized Residual

Frequency

1}
‘Theoretical Quantiles.

Studentized Residual

1} T
‘Theoretical Quantiles

2 13 H
Studentized Residual
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ex. Epilepsy - NB-gamma HGLM

HGLM

Model for Mean

y~B+T+A+V+BT +(Llpatient) + (1]id)

Model for Mean
Response Variable
Y

Variable Selected
\4 - B
patient T
id A

\i

BT

Random Effects
patient id
Distribution

poisson

Link Function

log

Distribution for Random effects 1

gamma

Distribution for Random effects 2

gamma
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ex. Epilepsy - NB-gamma HGLM

Model summary

Estimate from Mean Model Likelihood
Estimate  Std.Error t-value p_val exp(LL) exp(UL) -2ML -2RL CAIC  Scaled Deviance df
(Intercept)  -1.30319 001258 -103620 030011 002309 3.19575 125557654 127083165  1163.92304 14256506  108.34359
B 0.89250 0.00144 620806 0.00000 184175 323579
T -0.84462 000405 -208452 003711 0.19422  0.95080
A 0.49095 0.00370 132626 0.18475 079089  3.37535
v -0.02782 000019  -148099 0.13861 093741  1.00904
BT 0.32691 0.00207 158004 0.11410  0.92440 208013

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
patient  -1.29392 0.27420 001296 -5.78980
id -1.98401 0.13752 0.00936  -12.29151
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ex. Epilepsy - NB-gamma HGLM

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. Epilepsy - NB-gamma HGLM

Model checking plots for random effects

Normal Probability Plot Histogram of Studentized Residual Normal Probabilty Plot Histogram of Studentized Residual

Standardized Residual

Frequency

Standardized Residual

Frequency

1}
‘Theoretical Quantiles.

Studentized Residual

1} T
‘Theoretical Quantiles

2 1 3
Studentized Residual
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Chapter 4. HGLMs: algorithm

Introduction

o HGLMs extend GLMs by allowing random effects in the linear predictor.

@ HGLMs also allow regression models for the residual variance and the variance for
random effects.

o Lee, Nelder and Pawitan (2017) and Ha, Jeong and Lee (2017) described both the
h-likelihood method and IWLS algorithm with related theories.

@ In this chapter, we show how HGLMs can be fitted using interconnected and

augmented GLMs.
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Joint linear model for mean and dispersion

o Consider a linear model
y=XB+e
with e ~ N(0, ®) where ® = diag(¢;).
e The ML estimator for B is 3 = (X 1 X) "1 XTd 1y and var(f) = (X & 1X)"1.

o Now suppose that we have a regression model for the dispersion ¢;
g(¢i) = Giv

where g(-) is a link function and G; is the ith row in a design matrix G.

@ The ML estimate of the regression coefficient of the dispersion v can be computed
by using &2 as response in a gamma GLM with mean ¢;.
@ The REML estimate can also be computed by using é2/(1 — g;) as response in a

gamma GLM having a prior weight (1 — ¢;)/2 where g; is the ith diagonal element
in the hat matrix H = X(X o' X) ' X",
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Joint GLMs for mean and dispersion

@ Suppose y follows the GLM class of model n = X8 with E(y;) = u;,
var(y;) = ¢iV(wi) and the dispersion ¢; follows the regression model g(¢;) = G;
where g(-) is a link function and G; is the ith row in a design matrix.

e Given ¢;, the ML estimator /3 can be obtained by using an IWLS algorithm for GLM
model with prior weight 1/¢;. (full algorithm is described in chapter 2)

B=(X"TWX)'X"Ws, var(B) = (X" wx)!

o Given (3, the ML estimate for the regression coefficient of the dispersion model vy can

be computed by using the deviance d; as response in a Gamma GLM with mean ¢;.

@ The REML estimate can be computed by using d;/(1 — g;) as response in a gamma
GLM having a prior weight (1 — g;)/2 where g; is the ith diagonal element in the hat
matrix H = X(X"WX)'X™W.

GLM é GLM
for for
Mean y Dispersion
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Linear mixed model

o Consider the linear mixed model
y=XB+Zv+e
@ The model can be re-written as an augmented linear model

Y,=X.0+e;

(x5 2)=)e(2)
m v -V

@ The variance-covariance matrix of the augmented residual vector is given by

o (0l 0
var(e;) = W™ = ( 0 /\lm)

@ Data augmentation method can be used to fit random effects v.
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Linear mixed model

@ The estimates from weighted least squares are given by
XIwx,s=xIwy,

which is identical to Hendorsn's mixed model equations.

@ So we can extend the estimation method for joint GLMs to joint GLMs including

random effects by augmenting the response vector.

@ The weight matrix W may then be updated using the estimated variance
components and the algorithm iterates until convergence.

@ Lee and Nelder (2001) showed that the augmented linear model can be extended to
fit the HGLM class of models.
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HGLM class of models

@ HGLM has two random components: a response y and unobserved random effect v,
such that y|v follows a GLM distribution, namely normal, binomial, Poisson, or
gamma.

@ The expectation of the conditional model y|v is

E(ylu) =p
g(n)=Xp+2Zv
v =r(u)

where g(-) is a link function, X and Z are design matrices and S is a fixed effect.

@ The distribution of u is one of the conjugate distributions of GLM family: normal,

beta, gamma, or inverse-gamma.

@ The random effect v is given on an appropriate (weak canonical) scale through the

link function r(-) tranforming u to guarantee correct model estimator.
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IWLS algorithm for HGLMs

@ Consider the heteroscedastic linear mixed model
y=XB+Zv+e

with independent and heteroscedastic random effects v; ~ N(0, \;) and residuals

€j ~ N(O7 ¢,)
@ Now we can allow GLMs for the dispersion (residual variance) and random effect
variance
g1(¢i) = Gum
& (\i) = Gy

@ By taking log link for these variance components, we avoid negative estimates for
variance components.

@ Data augmentation method is used to fit the model.
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IWLS algorithm for HGLMs

@ The REML estimates for 7; can be obtained by applying a gamma GLM to the
response &2/(1 — q;) with weights (1 — q;)/2 for i =1,2,....n

@ Those for > are computed by applying a gamma GLM to the response v:2/(1 — g;)
fori=n+1,n+2..,n4+m

@ The hat value g; are obtained from the hat matrix of the augmented model.

Figure 4.5 Interconnected GLMs for HGLMs with structured dispersions.
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IWLS algorithm for HGLMs

@ Now we consider a HGLM such that

o y|v follows a GLM distribution with n = X + Zv.
o u follows any conjugate distribution of GLM family with gi(¢;) = G1;71 and
& (\i) = Gaie.
@ Then the REML estimates for 7; can be obtained by applying a gamma GLM to the
response d;/(1 — g;) with weights (1 — ¢;)/2 where d; is the deviance from y|v GLM

fori=1,---,n.

@ Those for ~, are computed by applying a gamma GLM to the response d;/(1 — g;)

where d; is the deviance from v GLM fori=n+1,--- ,n+ m.

@ We allow various GLMs to y and v in the augmented response (Z’) to fit random

effect model.

o We use inter-connected JGLM fit for mean and dispersion of ¢ and A.
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ex. Epilepsy continued

Review : Poisson GLM
Model : log pjj = Bo + Be;xg + Br,xT + Baxa + Bv;xv + Be;T,x8T

Over-dispersed Poisson GLM

@ Poisson GLM gives a deviance of 869.9 with degrees of freedom 230, clearly
indicating over-dispersion. To accommodate this, we may fit the over-dispersed
Poisson model with var(y) = ¢u.

o For the parameter estimation of ¢, we may use the deviance or Pearson chi-squared
statistic.

o From the deviance we have ¢ = 3.8 = exp(1.33) = 869.9/230
o From the Pearson chi-squared statistic we have ¢ = 4.5 = exp(1.505) = 1036.3/230
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ex. Epilepsy continued

@ Because the deviance residuals are the best normalizing transformation under the
exponential family, it gives an estimator with small variance, but it gives an

inconsistent estimate.

o Hilbe (2014) recommended to use the Pearson chi-squared statistics because it gives

a consistent estimator.

@ In finite sample, the deviance often gives more efficient estimators (Nelder and Lee,
1992). Thus, it is recommended to use the deviance in small samples.

@ Correlation among repeated measures should be considered, so HGLM should be
used for further analysis.
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ex. Epilepsy continued - Over-dispersed GLM

Based on deviance statistic

Joint GLM [ > | Joint GLM [ > | Joint GLM [ > |

Model for Mean Model for Mean Model for Mean
Yo B TAANVSET Yo B TAANVSET Yo B TAANVSET
Model for Phi Model for Phi Model for Phi
phi-1 pri-1 pri-1

Model for Mean Model for Phi Additional Settings
Response Variable Residual Variance Method of Estimating Phi
Y - @ Use ohi - deviance -
Variable Selected e R Selected REMLorML
patient T T b
id A 5
v A Order for Mean Model
BT v -
patient !
id

Order for Dispersion Model

@
C)

poisson -

Link Function
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ex. Epilepsy continued - Over-dispersed GLM

Model summary

Estimate from Mean Model

Estimate  Std. Error t-value p_val
(Intercept)  -2.79763 0.7920% -353198  0.00041
B 0.94952 0.08472  11.207%4  0.00000
T -1.34112 0.30482 -4.39969  0.00001
A 0.89705 0.22645 3.96127  0.00007
v -0.02936 0.01972 -1.48861  0.13659
BT 056223 0.1234% 4552%8  0.00001

Estimate from Dispersion Model
Estimate  Std. Error t-value

(Intercept) 1.33030 0.00728  14.2658%

Likelihood
-2ML -2RL cAIC  Scaled Deviance
1309.94298  1330.80922 1321.94298 230.00000

exp(Ll)  exp(UL)
001291  0.287%0
218906  3.05131
0.14391 047537
157333  3.82247
0.93424  1.00934
1.37740  2.23504
df
230.00000
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (mean model)

Studentized Residual

Standardized Residual

Residuals vs Fitted
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (dispersion model)

Normal Probability Plot Histogram of Studentized Residual
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ex. Epilepsy continued - Over-dispersed GLM

Based on Pearson chi-squared statistic

Joint GLM [ > | Joint GLM [ > | Joint GLM [ > |

Model for Mean Model for Mean Model for Mean
Yo B TAANVSET Yo B TAANVSET Yo B TAANVSET
Model for Phi Model for Phi Model for Phi
phi-1 pri-1 pri-1

Model for Mean Model for Phi Additional Settings
Response Variable Residual Variance Method of Estimating Phi
Y - @ Use ohi - Pearson -
Variable Selected e R Selected REMLorML
patient T T b
id A 5
v A Order for Mean Model
BT v -
patient !
id

Order for Dispersion Model

@
C)

poisson -

Link Function
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ex. Epilepsy continued - Over-dispersed GLM

Model summary

Estimate from Mean Model

Estimate  Std. Error t-value p_val
(Intercept)  -2.79763 0.86452 -323605 0.00121
B 0.94952 0.09247  10.26888  0.00000
T -1.34112 0.33270 -403106  0.00006
A 0.89705 0.24716 3.62938  0.00028
v -0.02936 0.02153 -1.36389  0.17260
BT 056223 0.13478 417151 0.00003

Estimate from Dispersion Model
Estimate  Std. Error t-value

(Intercept) 1.50531 0.00728 1614264

Likelihood
-2ML -2RL cAIC  Scaled Deviance
1314.31824 133413444  1326.31824 230.00000

exp(Ll)  exp(UL)
001120 0.33182
215608  3.09800
0.13626  0.50206
151075  3.98081
0.93094  1.01292
1.34725  2.28506
df
230.00000
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (mean model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (dispersion model)

Standardized Residual

Normal Probability Plot

Frequency

Histogram of Studentized Residual

K o 1
Theoretical Quantiles

2 4
Studentized Residual
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ex. Injection - injection(page68).csv

@ An industrial Taguchi experiment was performed to study the influence of several

controllable factors on the mean value and the variation in the percentage of

shrinkage of products made by injection molding (Engel, 1992).

y : percentage of shrinkage of products made by injection molding

Controllable factors Noise factors

A : cycle time M : percentage regrind
B : mould temperature N : moisture content

C : cavity thickness O : ambient temperature
D : holding pressure

E : injection speed

F : holding time

G : gate size
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ex. Injection - injection(page68).csv

@ This dataset has been attended by many researchers because the model checking
plots were not satisfactory.

o Lee and Nelder (1997) gave extensive discussion on how to choose a good model
and presented the heteroscedastic log-linear model.
Heteroscedastic log-linear model

@ Model with log-normal distribution and the identity link n =

Mean Model

n=Po+ PaA+ BcC+ BpD + BeE + BcG + BuN + Bc.nC - N+ Be.nE- N
Dispersion Model
log ¢ =0 +vaA+vrF
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ex. Injection molding - heteroscedastic log-linear model

Joint GLM [ > | Joint GLM [ > |

Model for Mean Model for Mean

y~atcdrergensenten
y~ atcrd+ergensenten

Model for Phi
Model for Phi
phi~ a+f

Y phi ~a+f

Model for Mean

Response Variable Model for Phi
:
v Residual Variance

Variable Selected ¥ Use phi hd
v B a R
° A Variable Selected
m & Y - 2 -
o 8 b t
n c
e "
en e
8
m
n
o
o
- - en

Distribution @

gaussian -

Link Function

log -
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ex. Injection molding - heteroscedastic log-linear model

Model summary

Estimate from Mean Model Estimate from Dispersion Model
Estimate  Std.Error  t-value pval  explll)  exp(UL) Estimate  Std.Error  t-value
(intercept) ~ 079972 000974 8212026 000000 2.18286 226780 (Intercept) ~ -2.84897  0.16090  -17.70613
a 014860 003539 419943 000003 108247 124353 a 060802 015968  -3.80766
c 006870 003089 222424 002613 100820 113797 f 232400 045938 1458117
d 015208 000972 -1564176 000000 084270 087544
e 001175 003159 037203 070987 095107 107645 Likelihood
2 007435 003488 213195 003301 086700 059402 “2ML “2RL GAIC | Scaled Deviance df
n 000600 000751 079962 042393 097950 100875 536847 | 5274608 | BA3153 2300000 | 2300000
en 018859 003419 551644 000000 112928 129123
en 017343 003420  -507144 000000 078626 089906

174 /569



ex. Injection molding - heteroscedastic log-linear model

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Injection molding - heteroscedastic log-linear model

Model checking plots (dispersion model)

Residuals vs Fitted |Residuals| vs Fitted

Studentized Residual
-
-
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ex. Crack growth continued

Review : Gamma GLM
Model : n =logpu = o+ B crack0

Gamma GLM with structured dispersion
o We may estimate ¢ either based on deviance or Pearson chi-squared statistic.

o In this example, degrees of fredom is large (239). We may prefer the Pearson
chi-squared statistic in estimating ¢.

Mean Model : n = logu = o + P1 crack0
Dispersion Model : log ¢ = v + 71 cycle
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ex. Crack growth continued - gamma with structured dispersion

Based on deviance statistic

Joint GLM [ > | Joint GLM [ > | Joint GLM [ > |

Model for Mean Model for Mean Model for Mean
y-eracko y-crocko y-crack0
Model for Phi. Model for P Model for Phi.
phi~cycle phi~cycle phi~cycle
4 4
Model for Mean m Model for Phi Additional Settings
Response Variable ResidualVariance Method o Estimating Phi
N - “ vse phi - deviance -
Veriable Selected Veriable Selected REMLorML
v v
specimen crackd
cyce specimen Order for Mean Model
oni oni s .
Tambda Tambda
Order for Dispersion Model
1 -
Restrcted LoD

Distribution

gamma -

Link Function

log -
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ex. Crack growth continued - gamma GLM with structured dispersion

Model summary

Estimate from Mean Model
Estimate  Std. Error t-value p_val exp(LL) exp(UL)
(Intercept) -5.92398 0.10275 -57.65246  0.00000 0.0021% 0.00327

crack0 261898 0.08714 30.05478 000000 11.56734 1627736

Estimate from Dispersion Model
Estimate  Std. Error t-value

(Intercept) -2.13220 0.00543  -11.04159%

cycle -10.30711 0.07664 -3.78089
Likelihood

-2ML -2RL cAIC  Scaled Deviance df
-1435.5224%  -142578772  -1431.5224% 23%.00000  23%.00000
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (dispersion model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Crack growth continued - gamma with structured dispersion

Based on Pearson chi-squared statistic

Joint GLM [ > | Joint GLM [ > | Joint GLM [ > |

Model for Mean Model for Mean Model for Mean

Y- crack0 Y crack0 V- crack0

Model for Phi Model for Phi Model for Phi

phi-cycle phi-cycle phi-cycle
Z 7

Model for Mean m Model for Phi

Response Variable Residual Variance

Additional Settings

Method of Estimating Phi

y - @ Use phi - Pearson -
Variable Selected Variable Selected REMLorML

o o El - ] e -
v y

specimen crackd

e specimen Order for Mean Model

phi phi ) .
lambda lambda

Order for Dispersion Model

1 -

Distribution
gamma -
Link Function

log -
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ex. Crack growth continued - gamma GLM with structured dispersion

Model summary

Estimate from Mean Model
Estimate  Std. Error t-value p_val exp(LL) exp(UL)
(Intercept) -5.94376 0.10266 -57.899%3  0.00000 0.00214 0.00321

crack0 2.63277 0.08634 3049483 000000 1174651  16.47740

Estimate from Dispersion Model
Estimate  Std. Error t-value

(Intercept) -2.00259 0.00543  -10.37021

cycle -13.15998 0.07666 -4.82607
Likelihood

-2ML -2RL cAIC  Scaled Deviance df
-1434.39174  -142443067  -1430.3%174 23%.00000  23%.00000
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (dispersion model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Bacteria - bacteria(page76).csv

@ Tests of the presence of the bacteria H. influenzae in children with otitis media in
the Northern Territory of Australia (MSHR 1999-2000 Annual Report).

y : 1(presence), O(absence)
ap : a(active), p(placebo)
hilo : hi(high compliance), lo(low compliance)
week : number of week at test (0,2,4,6,11)
ID : subject ID
trt : placebo, drug(a & lo), drug+(a & hi)
Binomial GLMM

o pj = P(yj = 1|vi)

e v; ~ N(0,\)

Ui

log <lf,,> = fo + Bul(i = drug) + B1(i = drug+) + i
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ex. Bacteria - binomial GLMM

Random Effects
3 .

Model for Mean

Distribution
y~trt +(1/ID) B N
binomial A
&
W Binomial Denominator
Link Function
Model for Mean
Response Variable 8
y .
Distribution for Random effects 1
Variable Selected
vy = gaussian -
ap
hilo
week
1D
Y

®®
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ex. Bacteria - binomial GLMM

Model summary

Estimate from Mean Model

Estimate  Std.Error t-value p_val
(Intercept) 241197 0.022%0 5.26639 0.00000
trtdrug -1.25602 0.03235 -1.94139 005221
trtdrug+ -0.75196 0.03305 -1.13762 0.25528
Estimate for log(Lambda)
Estimate Estimate(Exp)  Std. Error t-value
1D 0.29012 1.33659 007712  0.86520
Likelihood
-2ML -2RL cAIC  Scaled Deviance
20655501  205.94914  205.02878 176.65951

exp(LL) exp(UL)
4.54626 27.37521
0.08013 1.01211
0.12906 1.72218
df
204.70015
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ex. Bacteria - binomial GLMM

Model checking plots (residual)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Bacteria - binomial GLMM

Model checking plots (random effects)

Standardized Residual

Normal Probability Plot

Frequency

Histogram of Studentized Residual

K] o 1
Theoretical Quantiles

K o 1
Studentized Residual
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Chapter 5. HGLMs: Modeling

@ In this chapter, a number of dataset are modeled using HGLMs.

@ In the first few example we show analyses using normal, log-normal, gamma,

Poisson, and binomial HGLMs.
@ Thereafter, examples using HGLMs including structured dispersion are given.

@ We also fit models with correlated random effects, including spatial models.
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ex. Cake - cake(page95).csv

@ Experiment on the preparation of chocolate cakes, conducted at lowa State College
(Cochran and Cox, 1957).
Replicate : 15 replications
Batch : 3 batters
Recipe : R1(Recipe I), R2(Recipe Il), R3(Recipe III)
Temperature : 6 different baking temperatures (175 °C ~ 225 °C)
Angle : breaking angle
inter : Batch?

logAngle : logarithm of Angle
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ex. Cake - cake(page95).csv

Normal linear mixed model
e i =1,2 3 for recipes, j = 1,--- ,6 for temperatures and k = 1,--- , 15 for replicates.
o yik|vi, vik ~ N(pijk, %)
ik = p+ i + 75+ (Y7); + vk + Vi
Log-normal linear mixed model
@ The same model but with responses log yj gives a better fit.
log puijk = p+vi + 75 + (¥7); + vie + Vi

Gamma GLMM

11
® yik|vi, vik ~ Gamma (5, #Uw)

log pijk = p+ i + 75 + (v7); + Vi + Vi
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ex. Cake - normal linear mixed model

GLMM m Random Effects

Replicate Replicate:Recipe
Model for Mean

Random Slope Model
Angle ~ Recipe + Temperature + Recipe:Temperature + (1|Replicate] +

(1|Replicate:Recipe) ) ¥ Interactionin the Random Effect

Make Interaction Variable

Model for Mean eplicate Recipe

Response Variable Distribution
Angle - gaussian -
Variable Selected Link Function
Replicate N Recipe < dentity -
Batch Temperature
Angle Recipe:Temperatur
inter
logAngle

@

Make Interaction Variable
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ex. Cake - normal linear mixed model

Model summary

Estimate from Mean Model Estimate for log(Lambda)
Estimate  Std.Error  tvale  p.val L uL Estimate  Estimate(Exp)  Std.Error  t-value
(intercept) 2913333 198545 1467339 000000 2524184 3302482 Replicate 359765 3651219 039323 914890
RecipeR2 226667 183401 123590 021649 586133 132800  ReplicateRecipe 148538 441663 033917 437946
RecipeR3 4120000 183401 065430 051292 479467 239467
Estimate from Dispersion Model
TemperatureT185 240000 164165 146194 014376 081763 561763
TemperatureT195 166667 164165 101524 030999 -155097  4.88430 Estimate  Estimate(Exp)  Std.Error  t-value
I
TemperatureT205 440000 164165 268023 000736 118237  7.61763 (Intercept) 301192 2032647 | 007498 | 3170972
TemperatureT215 953333 164165 580717 000000 631570 1275097 .
Likelihood
TemperatureT225 593333 164165 361425 000030 271570 915097
2ML 2RL CAIC  Scaled Deviance df
RecipeR2TemperatureT185  0.13333 232164 005743 095420 441709 468375
164002109 159626055  1627.76624 22168009 22168009

RecipeR3:TemperatureT185 ~ -1.40000  2.32164 060302 054649 595042 315042
RecipeR2:TemperatureT195 320000 232164 137833 016810 -1.35042  7.75042
RecipeR3:TemperatureT195 213333 232164 091889 035815 241709 668375
RecipeR2:TemperatureT205 086667 ~ 232164 037330 070893  -3.68375 541709
RecipeR3:TemperatureT205  -1.46667 232164  -0.63174 052756 -601709 308375
RecipeR2:TemperatureT215  -1.93333  2.32164  -0.83274 040499  -6.48375 261709
RecipeR3:TemperatureT215  -3.06667 ~ 2.32164  -1.32090 018653  -7.61709 148375
RecipeR2:TemperatureT225 246667 232164 106247 028802 208375  7.01709

RecipeR3:TemperatureT225 ~ 1.86667 ~ 2.32164 080403 042138  -2.68375 641709
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ex. Cake - normal linear mixed model

Model checking plots

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted

|Studentized Residual|

B
Scaled Fitted Values

Normal Probability Plot

30 £
Scaled Fitted Values

Histogram of Studentized Residual

Frequency

K o i
Theoretical Quantiles

2 0
Studentized Residual
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ex. Cake - log-linear mixed model

GLMM

Model for Mean

Angle ~ Recipe + Temperature + Recipe:Temperature + (1|Replicate] +

(1|Replicate:Recipe)

Model for Mean

Response Variable

Angle -
Variable Selected

Replicate N Recipe <
Batch Temperature

Angle Recipe:Temperatur
inter

logAngle

@

Make Interaction Variable

Recipe Temperature

Random Effects

Replicate Replicate:Recipe

Random Slope Model
@ Interaction in the Random Effect
Make Interaction Variable
Replicate Recipe
Distribution

gaussian

Link Function

log
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ex. Cake - log-linear mixed model

Model summary

Estimate from Mean Model

(Intercept)

RecipeR2

RecipeR3
TemperatureT185
TemperatureT195
TemperatureT205
TemperatureT215
TemperatureT225
RecipeR2:TemperatureT185
RecipeR3:TemperatureT185
RecipeR2:TemperatureT195
RecipeR3:TemperatureT195
RecipeR2:TemperatureT205
RecipeR3:TemperatureT205
RecipeR2:TemperatureT215
RecipeR3:TemperatureT215
RecipeR2:TemperatureT225

RecipeR3:TemperatureT225

Estimate

3.36789

-009715

004392

006114

004789

0.13079

027854

017573

003814

003516

0.12876

0.06739

0.04892

-004232

-001590

-008822

009613

007012

Std. Error

0.06151

006212

0.06058

005332

0.05365

005166

0.04870

0.05069

0.07808

007718

007696

007579

007553

0.07487

007223

007115

007345

007172

t-value

5475575

-156388

072498

114661

0.89264

253189

571989

3.46694

048846

-0.45554

167303

0.88921

0.64765

056527

-022015

~1.24000

130887

097772

pval
0.00000
011784
0.46847
0.25154
0.37205
001134
0.00000
000053
0.62523
0.64872
009432
027389
051721
0.57189
0.82576
0.21498
0.19058

032821

exp(LL)
2572170
0.80340
0.84988
095756
0.94434
1.02998
1.20093
107938
089145
082991
097816
0.92205
0.90563
082774
0.85431
079639
095330

093198

exp(UL)
3273499
102491
1.07769
1.18016
1.16538
126117
145352
131663
121068
112313
132261
124102
121770
1.11007
1.13390
1.05256
127135

1.23453

Estimate for log(Lambda)

Estimate  Estimate(Exp) ~ Std.Error tvalue
Replicate -3.50920 002992 039329  -8.92275
Replicate:Recipe  -5.52280 000399 035557 -15.53240

Estimate from Dispersion Model

Estimate  Estimate(Exp) ~ Std.Error  t-value

(Intercept) ~ 2.99603 2000600 299444 100053
Likelihood
-2ML -2RL. CAIC  Scaled Deviance df
163216573 171417693  1621.87522 22325326 22325326
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ex. Cake - log-linear mixed model

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. Cake - gamma GLMM

GLMM

Model for Mean

Angle ~ Recipe + Temperature + Recipe:Temperature + (1|Replicate] + S
(1|Replicate:Recipe) p

Model for Mean

Response Variable

Angle -
Variable Selected
Replicate N Recipe <
Batch Temperature
Angle Recipe:Temperatur
inter
logAngle

@

Make Interaction Variable

Recipe Temperature

Random Effects
Replicate Replicate:Recipe
Random Slope Model
@ Interactionin the Random Effect
Make Interaction Variable

Replicate Recipe

Distribution

gamma

Link Function

log
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ex. Cake - gamma GLMM

Model summary

Estimate from Mean Model

(Intercept)

RecipeR2

RecipeR3
TemperatureT185
TemperatureT195
TemperatureT205
TemperatureT215
TemperatureT225
RecipeR2:TemperatureT185
RecipeR3:TemperatureT185
RecipeR2:TemperatureT195
RecipeR3:TemperatureT195
RecipeR2:TemperatureT205
RecipeR3:TemperatureT205
RecipeR2:TemperatureT215
RecipeR3:TemperatureT215
RecipeR2:TemperatureT225

RecipeR3:TemperatureT225

Estimate

3.35326

-007716

005501

009527

0.06249

0.15014

028819

0.19382

001244

-0.05230

0.09528

007529

002747

-003699

-005256

-006247

008130

005727

Std. Error

0.00036

0.00039

0.00039

0.00029

0.00029

0.00029

0.00029

0.00029

0.00041

0.00041

0.00041

0.00041

0.00041

0.00041

0.00041

0.00041

0.00041

0.00041

t-value

47.16648

-101577

072417

166729

109366

262750

504353

3.39200

-0.15390

-0.64718

117901

093174

033994

045772

-0.65046

-077302

100602

0.70867

pval
0.00000
020974
0.46896
0.09546
0.27411
0.00860
0.00000
0.00069
087769
051752
023839
035147
073390
0.64716
0.51539
0.43951
0.31441

047853

exp(LL)
2487641
079767
081554
0.98341
095170
103888
119267
1.08527
084297
081003
0.93884
0.92026
087729
082252
0.80981
0.80183
092581

090382

exp(UL)
3287161
107436
1.09843
1.23031
1.19064
129970
149211
135774
115714
111192
128874
126324
120425
1.12908
111163
1.10067
1.27085

1.24068

Estimate for log(Lambda)

Estimate  Estimate(Exp) ~ Std.Error tvalue
Replicate 352447 002947 001108 -8.90470
Replicate:Recipe  -5.39311 000455 000955  -15.81910

Estimate from Dispersion Model

Estimate  Estimate(Exp) ~ Std. Error t-value
(Intercept) ~ -3.93787 001949 000267  -41.51829
Likelihood
-2ML -2RL. CAIC  Scaled Deviance df
161611729 1697.84887  1604.38663 22207130 222.07130
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ex. Cake - gamma GLMM

Model checking plots

Residuals vs Fitted |Residuals| vs Fitted
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ex. Fabric - fabric(pagel00).csv

o Fabric data (Bissell, 1972).
| : fabric length
y : number of faults in a bolt of fabric

rf : 32 observations

x : logarithm of fabric length

log(no. o faults)

log(length)
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ex. Fabric - fabric(pagel00).csv

Poisson GLM
@ y ~ Poi(u) and x = log |
log = a+ Bx
@ Deviance = 64.5 with 30 df: over-dispersion
@ It may be caused by the assumed Poisson regression model begin incorrect (Azzaline
et al., 1989 and Firth et al., 1991).
Poisson-gamma HGLM

@ Bissell(1972) proposed the use of the negative binomial model, which can be fitted
via a Poisson HGLM.

° y|u~ Poi(n)

@ When u follows the gamma distribution with E(u) = 1 and var(u) = A,

logu = a+ Bx +logu
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ex. Fabric - Poisson-gamma HGLM

Random Effects

HGLM m =

Model for Mean Distribution
Y poisson M

Link Function

m Model for Mean
Response Variable
Distribution for Random effects 1
y -
gamma -
Variable Selected
| X
v
v
phi

®®
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ex. Fabric - Poisson-gamma HGLM

Model summary

Model Description

Model Link  Dist Rand
Mean y~x+(1lrf) log  poisson  gamma
Phi constant log  gaussian NA
Lambda lambda~1 log  gaussian NA

Estimate from Mean Model

Estimate  Std. Error t-value p_val
(Intercept)  -3.77988 001443  -261933 000881
X 0.94236 0.00226 4.17445  0.00003
Estimate for log(Lambda)
Estimate  Estimate(Exp) ~ Std.Error t-value
f 207637 0.12538 002103  -572705
Likelihood
-2ML -2RL cAIC  Scaled Deviance
17575601  179.91906  172.76006 14.33786

explll)  exp(UL)

000135  0.38618

164856 399409
df
14.43461
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ex. Fabric - Poisson-gamma HGLM

Model checking plots (residual)

Studentized Residual

Residuals vs Fitted

|Residuals| vs Fitted

Standardized Residual
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ex. Fabric - Poisson-gamma HGLM

Model checking plots (random effects)

Normal Probability Plot Histogram of Studentized Residual

Standardized Residual
Frequency

1 2 3 2 1 1 2

E o E 0
Theoretical Quantiles Studentized Residual
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ex. Train continued

Review : Poisson GLM
o y ~ Poi(u)
logu =logt+ a+ Bx

Poisson-gamma HGLM
o Fitting the data assuming a Poisson GLM, there exist two outliers which give
marginally significant lack of fit.

@ we fit a negative binomial model via a Poisson-gamma HGLM with saturated
random effects for full response, number of train accidents.

o ylu ~ Poi(n)

@ When u follows the gamma distribution with E(u) = 1 and var(u) = A,

logpu =logt+ a+ Bx + logu
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ex. Train continued - Poisson-gamma HGLM

HGLM

Model for Mean

y~x + (1]id)

Model for Mean
Response Variable

% v

Variable Selected
Y X

t

id

logt

Random Effects
id
Distribution

poisson

Link Function

log

Distribution for Random effects 1
gamma

@ Offset Variable

Offset Variable

logt
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ex. Train continued - Poisson-gamma HGLM

Model summary

Model Description

Model Link  Dist Rand
Mean y~x+(1lid) log  poisson  gamma
Phi constant log  gaussian NA

Lambda lambda~1 log  gaussian NA

Estimate from Mean Model
Estimate  Std. Error t-value pval  exp(LL)
(Intercept) ~ -4.13382 000223 -1855216 000000 0.01035

X -0.03632 000015 -2.50225 001234 093729

Estimate for log(Lambda)

Estimate  Estimate(Exp) ~ Std.Error t-value
id -175331 0.17320 002459 -4.13593
Likelihood
-2ML -2RL cAIC  Scaled Deviance df
127.96361  136.99934  129.85398 11.35079  15.60066

exp(UL)
0.02480

0.99216
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ex. Train continued - Poisson-gamma HGLM

Model checking plots (residual)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Train continued - Poisson-gamma HGLM

Model checking plots (random effects)

Normal Probability Plot Histogram of Studentized Residual

Standardized Residual
Frequency

2 2 A 1 2

E o 0
Theoretical Quantiles Studentized Residual
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ex. Salamander - salamander(pagel05).csv

@ Three experiments were conducted : two were done with the same salamanders in
the summer and autumn and another on in the autumn of the same year using
different salamanders (McCullagh and Nelder, 1989).

@ In each experiment, 20 females and 20 males were paired six times for mating with
individuals from their own and the other population, resulting in 120 observations in
each experiment.

Season : Summer, Autumn

Experiment : 3 experiments

TypeM : type of male. 1(whiteside), O(rough butt)
TypeF : type of female. 1(whiteside), O(rough butt)
Cross : TypeM x TypeF

Male : 60 males (20 males for each experiment)
Female : 60 females (20 females for each experiment)

Mate : success of mating. 1(success), O(failure)
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ex. Salamander - salamander(pagel05).csv

Binomial GLMM
@i, j=1,---,20and k=1,2,3

@ yijk : The outcome (Mate) for the mating of the i-th female with the j-th male in
the k-th experiment.

pik = P(yix = 1|vi, vi¥)

Vi ~ N(0,07), vii' ~ N(0,07,)

Iog( Pl ) = Bo+ Fi+ M; + (FM); + vi + vt
1 — pijk
@ There have been many methods developed to obtain approximate ML estimators.

Noh and Lee (2007) showed that HL(1,2) has the smallest bias while HL(1,1) is fast
with results as follows.
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ex. Salamander - Binomial GLMM with HL(1,1)

HGLM [ »er | HGLM

Model for Mean
Model for Mean

Mate ~ TypeM + TypeF + TypeM:TypeF + (1|Male) + (1|Female)
g Mate ~ TypeM + TypeF + TypeM:TypeF + (1|Male) + (1|Female)

Model for Mean
Response Variable i .
ot . o Additional Settings

- Method of Fitting Dispersion Model
Variable Selected
ambda

Season N TypeM N deviance -
Experiment TypeF
Cross TypeM:TypeF
Male REMLor ML
Female
Mate REML v
Order for Mean Model
1 -

Order for Dispersion Model

Make Interaction Variable 1

—

Random Effects

Male Female
Distribution
binomial -
Binomial Denominator

Link Function

logit -
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ex. Salamander - Binomial GLMM with HL(1,1)

Model summary

Model Description

Model Link
Mean  Mate - TypeM + Typef + TypeM:TypeF + (1|Male) + (1|Female) logit
Phi constant log
Lambda lambda ~ 1 log
Estimate from Mean Model
Estimate  Std. Error t-value p_val exp(LL)
(Intercept) 103642 001948 266038  0.00781 131370
TypeM 072386 002253 -160616 010824 020045
TypeF 298507 002588 -5.76615 000000 001832
TypeM:TypeF  3.68801 002774 664852 000000 1347423
Estimate for log(Lambda)
Estimate  Estimate(Exp) ~ Std.Error t-value
Male 012386 113185 006353 044840
Female 023341 126290 006186 086789
Likelihood
2ML 2RL CAIC  Scaled Deviance df
41896423 41935081  402.37329 27483314 29622961

Dist.
binomial
gaussian

gaussian

exp(UL)
604957
117289
0.13940

118.53981

Rand
gaussian, gaussian
NA

NA
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ex. Salamander - Binomial GLMM with HL(1,1)

Model checking plots (residual)

Studentized Residual

Standardized Residual

Residuals vs Fitted

>

|Studentized Residual|

|Residuals| vs Fitted

.
-~
hY
1 \
.
2 3
Scaled Fitted Values

Normal Probability Plot

2 0
Scaled Fitted Values
Histogram of Studentized Residual

Frequency

0 2
Theoretical Quantiles

2 ] 0 1 2
Studentized Residual
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ex. Salamander - Binomial GLMM with HL(1,1)

Model checking plots (random effects)

Normal Probabilty Plot

Histogram of Studentized Residual

Normal Probabilty Plot

Histogram of Studentized Residual

‘Standardized Residual

Frequency

‘Standardized Residual

Frequency

T 1
Theoretical Quanties

1
Studentized Residual

1 T
‘Theoretical Quantes

1 T
Studentized Residual
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ex. Salamander - Binomial GLMM with HL(1,2)

HGLM

Model for Mean

Mate - TypeM + TypeF + TypeM:TypeF +(1|Male) + (1|Female)

Model for Mean

Response Variable

Mate

Variable Selected

Season
Experiment
Cross

Make Interaction Variable
TypeM TypeF
Random Effects
Male Female
Distribution

binomial
Binomial Denominator

Link Function

logit

TypeM B

TypeF
TypeM:TypeF

HGLM m

Model for Mean

Mate ~ TypeM + TypeF + TypeM:TypeF + (1|Male) + (1|Female)

Additional Settings
Method of Fitting Dispersion Model

REML or ML

REML v
Order for Mean Model

1 ~

Order for Dispersion Model

2 -
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ex. Salamander - Binomial GLMM with HL(1,2)

Model summary

Model Description

Model

Link

Mean  Mate~TypeM + TypeF + TypeM:TypeF + (1|Male) + (1|Female)  logit

Phi constant

Lambda  lambda -~ 1

Estimate from Mean Model

Estimate  Std.Error  t-value p.val
(Intercept) 101310 001966 257667 000998
TypeM -071900 002270 -158346 0.11332
TypeF 295421 002608 -5.66288  0.00000
TypeM:TypeF 364156 002616 696125 000000
Estimate for log(Lambda)
Estimate  Estimate(Exp)  Std. Error t-value
Male 0.14484 115586 006324 052675
Female 025299 128787 006162 094434
Likelihood
2ML -2RL CAIC  Scaled Deviance
41901985  419.34003 40216351 27345781

log

log

exp(LL)
127438
020009
001875

1368426

df

295.64689

Dist.
binomial
gaussian

gaussian

exp(UL)
5.95204
118646
0.14490

10636432

Rand

gaussian, gaussian

NA

NA
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ex. Integrated circuit - circuit(pagel07).csv

@ The width of lines made by a photoresist-nanoline tool were measured in five
different locations on silicon wafers, measurement being taken before and after and
etching process being treated separately (Phadke et al, 1983).

@ 9 experimental factors (A-1) arranged in an Lig orthogonal array and produced 33
measurements at each of 5 locations, giving a total of 165 observations.

Width : width of line

Wafer : 33 silicon wafers

Experimental factors

A : mask dimension F : aperture

B : photoresist viscosity G : exposure time
C : spin speed H : developing time
D : bake temperature | : etch time

E : bake time
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ex. Integrated circuit - circuit(pagel07).csv

Linear Mixed Models with structured dispersion
@ g: index for wafers(1~33), r: index for observations within wafers
@ i, j, k,I,m n,o,p: index for A-H
@ vy ~ N(0,)\) and e; ~ N(0, ¢)
Yijkop,qr = Po + ai + bj + ck + 8o + hp + vq + €gr

@ ) and ¢ represent the between-wafer and within-wafer variances respectively, which

can be affected by the experimental factors.

The dispersion and random effect variance can be modeled as
log Gimno = 7o' + ai + ey + f,” + &0

log Am = 70 + €m
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ex. Intergrated circuit - LMM with structured dispersion

HGLM

Model for Mean

Width~A+B+C+

Model for Phi

phi-A+E<F+G

Model for Lambda

lambdia - £

Lambda

G+H +(1|Wafer)

Model for Mean

Response Variable

Width
Variable Selected
Width B A

) E

3 c

3 G

| H
Wafer

veaf

op

Random Effects

Wafer

HGLM

Model for Mean

Width~A+B+C+

Model for Phi

phi-A+E<F+G

Model for Lambda

lambda - £

@ Use

G+H +(1|Wafer)

Model for Phi
Residusl Variance
ohi

Variable
Width S
e

c
D
H
I

Wafer

viaf
e

Selected
A

E
F
G

HGLM m

Model for Mean

Width - A+B+C+G+H +(1|Wafer)

Model for Phi

phi-A+E<F+G

Model for Lambda

lambdia - £

Model for Lambda
Variance of Random Effect
 Use Variable Selected
Width B E s
A
:
c
D
F
G
H
]
Wafer
waf
o
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ex. Intergrated circuit - LMM with structured dispersion

Model summary

Estimate from Mean Model Estimate from Dispersion Model
Estimate  Std. Error t-value p.val L uL Estimate  Estimate(Exp)  Std. Error t-value
(Intercept) 247711 005485 4516200 000000  2.36961 258462 (Intercept) ~ -4.71603 0.00895 032933  -14.32017
AA2 037713 0.04336 869804 000000 029215 046211 AA2 -0.87673 041614 024390 359461
BB2 -0.57360 004492  -1276957 000000 -0.66164  -0.48556 EE2 -0.01647 0.98366 0.30625 -0.05378
cc2 037126 0.04803 772971 000000 027712 0.46540 EE3 0.69693 200758 029189 238767
cc3 051364 005147 997917 000000 041276 061453 FF2 067877 197145 030016 226134
GG2 -0.19753 0.05051 -391035 000009 -029653 -0.09852 FF3 1.05427 286988 029927 352279
GG3 -0.39765 0.04905 -8.10740 000000 -0.49378 -0.30151 GG2 -0.13317 087531 029094 045774
HH2 0.00035 0.05014 000698  0.99443  -009793  0.09863 GG3 -0.63210 053147 029945 -2.11090
HH3 0.29465 005146 572554 000000 019379 039552
Likelihood
Estimate for log(Lambda) -2ML -2RL cAIC  Scaled Deviance df
Estimate  Estimate(Exp) ~ Std.Error t-value -23211137  -18879053  -255.00436 137.00508  137.00508
(Intercept) 4.77373 0.00845 066343 -7.19557
EE2 -1.28365 027703 116318 -1.10357
EE3 148814 442884 0.86132 172775
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ex. Intergrated circuit - LMM with structured dispersion

Model checking plots (mean model)

Studentized Residual

Standardized Residual

|Residuals| vs Fitted
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i
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0 2
Studentized Residual
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ex. Intergrated circuit - LMM with structured dispersion

Model checking plots (dispersion model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Studentized Residual|

|Residuals| vs Fitted

5 4
Scaled Fitted Values

Normal Probability Plot

5 %
Scaled Fitted Values
Histogram of Studentized Residual

Frequency

3 2 1 0 1
Theoretical Quantiles

2 0
Studentized Residual
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ex. Semiconductor - semiconductor(pagel09).csv

@ Designed experiment in a semiconductor plant, which is of interest to study the
curvature or camber of the substrate devices produced in the plant (Myers et al.,

2002).
@ There is a lamination process, and the camber measurement is made four times on

each device produced.

Device : 16 devices

x1-x6 : 6 employed factors (each design variable is taken at 2 levels)

y : camber taken in 10™* in./in.

Gamma HGLM with structured dispersion

o When y|v ~ Gamma with E(y|v) = u and Var(y|v) = éu°,
log i = Po + X151 + X33 + X535 + X656 + v

log ¢ =70 + X272 + X373
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ex. Semicondu

HGLM

Model for Mean

r - gamma HGLM with structured dispersion

XL+ X345+ 6 + (1|Device)

Model for Phi

phi-x2+x3

Model for Mean
Response Variable

¥

Variable Selected
Device - o
x2 x3
xa %
v x6
Random Effects

Device

Distribution

gamma

Link Function

log

Distribution for Random effects 1

gaussian

HGLM
Model for Mean

y~x1+x3+x5+x6 +(1|Device)

Model for Phi

phi~x2+x3

Mean

Model for Phi
Residual Variance
@ Use phi

Variable

Selected
x2
3
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ex. Semiconductor - gamma HGLM with structured dispersion

Model summary

Estimate from Mean Model Estimate from Dispersion Model
Estimate  Std. Error t-value pval  exp(ll)  exp(UL) Estimate  Estimate(Exp) ~ Std.Error t-value
(Intercept) ~ -4.70983 000029 -82.21466 0.00000 0.0805 0.01008 (Intercept) ~ -2.59414 007471 000547  -13.33110
x1 0.21066 0.00029 371436 000020 110462  1.37964 x2 -0.67111 0.51114 0.00547 -345015
x3 0.32950 0.00029 575167 000000 124261  1.55547 x3 -0.49674 0.60851 0.00547 -2.55492
x5 -0.17253 0.00029 -3.04203 000235 075300 0.94048
Likelihood
x6 -0.35640 0.00029 -6.28631 000000 0.62655 0.78249
-2ML -2RL CAIC  Scaled Deviance df
Estimate for log(Lambda) 57470445 55541926  -577.89956 5229914 5229914
Estimate  Estimate(Exp)  Std. Error t-value
Device  -3.49308 0.03041 001229  -7.95993
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ex. Semiconductor - gamma HGLM with structured dispersion

Model checking plots (mean model)

|Residuals| vs Fitted
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ex. Semiconductor - gamma HGLM with structured dispersion

Model checking plots (dispersion model)

Residuals vs Fitted
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ex. Respiratory - respiratory(pagelll).csv

o Data from a clinical trial comparing two treatments for a respiratory illness (Strokes
et al., 1995)

@ In each of two medical centers, 111 patients were randomly assigned to active
treatment (54) or placebo (57). During treatment, respiratory status was determined
at 4 visits.

y : respiratory status during treatment. 1(good), 0(poor)
patient : 111 patients

treatment, trt : 1(active treatment), O(placebo)

sex, msex : 1(male), O(female)

age : age of patients

center : 2 medical centers

baseline, base : baseline respiratory status. 1(good), 0(poor)

past : respiratory status for last visit. 1(good), 0(poor)
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ex. Respiratory - respiratory(pagelll).csv

Binomial HGLM with structured dispersion
e j=1,---,111and j=1,2,3,4
o pj = P(yj = 1|vi, yij-1))
@ Vv~ N(O,)\,‘)

log (1pu> = B + B rt; + B msex; + 8" age,
— Pij

+ B center; + " base; + B yi;_1) + vi

The random effects have a structured dispersion.

log \i = ((f‘) + Bp)age,
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ex. Respiratory - Binomial HGLM with structured dispersion

HGLM [ »on | HGLM m

Model for Mean

Model for Mean
y~trt+ msex + age + center + base + past + L patient)

“ y~trt+ msex + age + center + base + past + (1|patient)
Modelfor Lambda P
lembda - age Model for Lambda
= e
/4
m Model for Mean
Response Variable
Y -
Model for Lambda
atient B ut =
treatment msex lambda v
bascline center
base Variable Selected
past
patient - age
treatment
sex
center
past
v
trt
msex
Random Effects base
patient baseline
Distribution
binomial -
Binomial Denominator

Link Function

logit -
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ex. Respiratory - Binomial HGLM with structured dispersion

Model summary

Estimate from Mean Model
Estimate  Std.Error t-value p_val exp(LL) exp(UL)

(intercept) ~ -1.10565 005176  -1.06800 028552  0.04351 251793

trt 124643 002082 299271 000277 153743 786750
msex -0.25778 002923  -044097 065923 024573 243019
age -0.03546 000092 -1.91814 005509  0.93082 1.00077
center 0.67457 002094 161084 010722 086397 4.46090
base 182156 002231 408156 000004 257753  14.82463
past 058465 001523 191929 005495 098768 325994

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
(Intercept)  -0.67987 0.50668 0.16916  -0.92442
age 0.04716 1.04829 0.00463 2.34200
Likelihood
2ML -2RL CAIC  Scaled Deviance df
43062262  437.84871 42269733 30333011  384.31605
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ex. Respiratory - Binomial HGLM with structured dispersion

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted

Studentized Residual
|Studentized Residual|

N\

/
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Scaled Fitted Values Scaled Fitted Values

Normal Probability Plot Histogram of Studentized Residual

2

Standardized Residual
Frequency
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Theoretical Quantiles Studentized Residual
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ex. Respiratory - Binomial HGLM with structured dispersion

Model checking plots (variance of random effects)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Studentized Residual|

|Residuals| vs Fitted

Scaled Fitted Values
Normal Probability Plot

03 00
Scaled Fitted Values

Histogram of Studentized Residual

Frequency

3 0 1
Theoretical Quantiles

2 0
Studentized Residual
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ex. Orthodontic growth - orthodont(pagel13).csv

o Data contain the growth measurement of 27 childrens from age 8 until age 14
(Pinheiro and Bates, 2000).

@ Every two years, the distance between the pituitary and the pterygomaxillary fissure
was recorded using x-ray images of the skull.

distance : distance of the subject (mm)

age : age (8, 10, 12, 14)

Subject : 16 male(boys) and 11 female(girls)
Sex : Male, Female

M : 1(Male), O(Female)

Mage : Mxage

F : 1(Female), 0(Male)

Fage : Fxage
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ex. Orthodontic growth - orthodont(pagel13).csv

Correlated random intercept and slope model
@ yj: distance of the i-th subject at the j-th age Aj
@ €j~ N(07 ¢U)

@ The random intercept vi; and random slope v; are assumed to be bivariate normal

distribution. (vi, v2;)T ~ BVN <O, ( M P >\1>\2>>
PV )\1A2 )\2

yi = BiFi + B2FiAj + B3Mi + BaMiAj + vai + Ajvai + €5
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ex. Orthodontic growth - Correlated random intercept and slope

HGLM m Random Effects

Subject
Model for Mean
@

distance ~-1+M +Mage + F + Fage + (1|Subject) + (agelSubject) Random Slope Model

Vi ‘Without Random Intercept

Random slope

Model for Mean o

- Response Variable Distribution
distance v gaussian -
Variable Selected Link Function

distance M

identit,
age Mage fdentity M
Subject F
Sex Fage

Distribution for Random effects 1

gaussian v

Distribution for Random effects 2

gaussian v

@ No Intercept Model
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ex. Orthodontic growth - Correlated random intercept and slope model

Model summary

Estimate from Mean Model Estimate from Dispersion Model
Estimate  Std.Error t-value p_val LL uL Estimate  Estimate(Exp)  Std. Error t-value
M 16.34063 0.88415 1848181 0.00000 14.60770  18.07355 (Intercept) 056229 175469 026400  2.12986

Mage 078437 0.08218 954419  0.00000 0.62330 0.94545

Likelihood

F 1737273 106632 1629222 000000 1528274  19.46272

Fage 047955 009912 483817 000000 028528 067381 o “2RL CAIC | Scaled Devisnce d
43266363 43602562 39372460 8156334 8156334

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std. Error t-value
Subject 163012 510450 060953 267438
Subject1  -349711 003028 021577 -1620723
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ex. Orthodontic growth - Correlated random intercept and slope model

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Orthodontic growth - Correlated random intercept and slope model

Model checking plots for random intercept and slope

Standardized Residual

Normal Probability Plot

i H
-3 H
&
-

Histogram of Studentized Residual

Standardized Residual

Normal Probability Plot

Frequency

Histogram of Studentized Residual

Theoretical Quantiles

1] T
Studentized Residual

1]
‘Theoretical Quantiles.

Studentized Residual
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ex. Scottish lip cancer - lip(pagell5).csv

o Clayton and Kaldor (1987) analyzed observed and expected numbers of lip cancer
cases in the 56 administrative areas of Scotland with a view to produce a map that
would display regional variation in cancer incidence and yet avoid the presentation of

unstable rates for the smaller areas.
@ Presumably the spatial aggregation is due in large part to the effects of
environmental risk factors.
logE, n : Logarithm of expected numbers of lip cancer cases
O, y : Observed numbers of lip cancer cases

Paff : The percentage of the work force in each area employed in agriculture, fishing, or

forestry.
county : 56 administrative areas

x : Paff/10
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ex. Scottish lip cancer - lip(pagell5).csv

Poisson HGLM
o yilvi ~ Poi(pi)

log i = log nj + Bo + B1xi/10 + v;

@ The random effect v; represented unobserved area-specific log-relative risks. They
tried 3 models.

M1 Vi ~ N(O, )\)
M2 v; ~ intrinsic autoregressive model (IAR)

M3 v; ~ MRF in which Var(v)™! = (I — pM)/), where M is the incidence matrix
for neighbours.
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ex. Scottish lip cancer - lip(pagell5).csv

@ Lee and Nelder (2001) chose the model M3 as best.
o The MRF model with p = 0 is the M1 model.
o MRF with p = 0.174 provides a suitable model.

@ We found that the main difference between M1 and M3 is the prediction for county
49, which has the highest predicted value because it has the largest n;. This gives
the very large leverage value (or hat value) of 0.92.

@ Though model checking plots are useful, our eyes could be misled, so that objective
criteria based upon the likelihood are also required in the model selection.
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ex. Scottish lip cancer - Poisson HGLM (M1)

HGLM

Model for Mean

y~x +(1|county)

Model for Mean
Response Variable

y v

Variable Selected
logE X
o
Paff
county

Y
n

Random Effects
county

Distribution

poisson

Link Function
log

Distribution for Random effects 1
gaussian

¥ Offset Variable

Offset Variable

n
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ex. Scottish lip cancer - Poisson HGLM (M1)

Model summary

Estimate from Mean Model

Estimate  Std.Error t-value p_val exp(LL)
(Intercept) 1.95561 0.00180 10.85483 0.00000 4.96541

X 0.11159 0.00164 067928 049696  0.81027

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
county  -1.01476 0.36249 0.01148  -5.12544
Likelihood
-2ML -2RL cAIC  Scaled Deviance df
34407529  348.84551  310.55295 20.71838  15.07073

exp(UL)
10.06157

1.54275
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ex. Scottish lip cancer - Poisson HGLM (M1)

Model checking plots (mean model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Scottish lip cancer - Poisson HGLM (M1)

Model checking plots for random effects

Standardized Residual

Normal Probability Plot

Histogram of Studentized Residual
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ex. Scottish lip cancer - IAR model (M2)

Random Effects

HGLM m =

Model for Mean Distribution

y ~x +(1|county) poisson -~

Link Function

log v
Model for Mean

Response Variable

Distribution for Random effects 1

IAR -~
Y v
Upload Neighborhood File
Variable Selected
logE X Browse... lipneighbor(page115
o Uload complete
Paff
county ¥ Offset Variable
\: Offset Variable

n -
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ex. Scottish lip cancer - IAR model (M2)

Model summary

Estimate from Mean Model

Estimate

1 -0.17898

2 0.35922
Likelihood
-2ML

315.35871

Std. Error

0.11648

0.12159

-2RL

325.51181

t-value

-1.53648

2.95427

cAlC

296.60710

p_val LL UL
0.12442  -040728 004933

0.00313 0.12090 059754

df

27.53415
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ex. Scottish lip cancer - IAR model (M2)

Model checking plots (mean model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted
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ex. Scottish lip cancer - IAR model (M2)

Model checking plots for random effects

Normal Probability Plot Histogram of Studentized Residual
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ex. Scottish lip cancer - MRF model (M3)

HGLM

Model for Mean

y~x +(1|county)

Model for Mean
Response Variable

y v

Variable Selected
logE X

o

Paff

county

Y
n

Random Effects

county

Distribution

poisson

Link Function

log

Distribution for Random effects 1

MRF

Upload Neighborhood File

Browse... lipneighbor(page115).csv

¥ Offset Variable

Offset Variable

n
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ex. Scottish lip cancer - MRF model (M3)

Model summary
Estimate from Mean Model
Estimate  Std.Error t-value p_val LL UL
1 026827 021167 126739 020502 -0.14660 0.68314

2 037478 0.12380 3.02717 0.00247 013212  0.61743

Likelihood
-2ML -2RL cAIC df

315.12355  323.05953 30152099  24.32682
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ex. Scottish lip cancer - MRF model (M3)

Model checking plots (mean model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Studentized Residual|

|Residuals| vs Fitted

Scaled Fitted Values
Normal Probability Plot

Scaled Fitted Values
Histogram of Studentized Residual

Frequency

125
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Theoretical Quantiles

3 2 ] 0 1
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ex. Scottish lip cancer - MRF model (M3)

Model checking plots for random effects

Standardized Residual

Normal Probability Plot

Histogram of Studentized Residual

Frequency

Kl [ 1
Theoretical Quantiles

2 A 0
Studentized Residual
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ex. Loaloa - loaloa(pagell7).csv

o Dataset describes prevalence of infection by the nematode Loa loa in North
Cameroon, 1991-2001 (Rousset et al., 2016).

@ The study investigated the relationship between altitude, vegetation indices, and
prevalence of the parasite.

id, LOC : 197 locations

longitude : longitude of locations

latitude :latitude of locations

y : number of infected individuals at location

n : number of individuals at location

x1 : altitude (m)

x2-x4 1 x2 = max (x1 — 650, 0), x3 = max (x1 — 1000, 0), x4 = max (x1 — 1300, 0)

x5 : maximum normalized-difference vegetation index (NDVI) from repeated satellite
scans

x6 : standard error of NDVI
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ex. Loaloa - loaloa(pagell7).csv

Binomial HGLM with the logit link

o yi|vi ~ Binomial(nj, pi)

log (1 fip'> = Bo + Pix1 + Paxo + Paxz + Baxa + Bsxs + PBexe + Vi

o The random effect v; is for the i-th location. Rousset et al. (2016) fitted HGLMs

M1 v; ~ independent N(0, \)
M2 v; ~ normal distribution with variance A and Matern correlation for two

locations which is represented by
(pd)" K. (pd)
2v—1T(v)

(1 — Nugget)
o Nugget: parameter describing a discontinuous decrease in correlation at zero distance
@ p: scaling parameter, v: smoothness parameter

@ K,: bessel K function of order v and d is distance computed by longitudes and

latitudes for two locations
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ex. Loaloa - Binomial HGLM (M1)

HGLM

Model for Mean

y~x1+x2+x3+x4+x5+x6 +(1|]LOC)

Lambda

Model for Mean
Response Variable
y -
Variable Selected
id x1
longitude x2
latitude x3
y x4
n x5
Loc x6

Random Effects
Loc

Distribution

binomial

@ Binomial Denominator
Binomial Denominator

n
Link Function
logit

Distribution for Random effects 1

gaussian
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ex. Loaloa - Binomial HGLM (M1)

Model summary

Estimate from Mean Model

Estimate  Std.Error t-value p_val exp(LL)
(Intercept) ~ -15.11500 009867 -7.65970  0.00000 0.00000
x1 0.00280 000003 532398  0.00000 100177
x2 -0.00395 000006 -352657  0.00042 0.99387
x3 -0.00854 000011 -377862  0.00016 098711
x4 0.00873 000015 291971  0.00350 1.00287
x5 14.92160 0.14985 497885 0.00000 8497.09596
X6 185314 0.24595 037673  0.70637 0.00041

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std. Error t-value
LOC  -041153 0.66264 0.02649  -3.57344
Likelihood
2ML -2RL CAIC  Scaled Deviance df
135945531  1404.11322  1127.13155 7161361 42.49749

exp(UL)
0.00001
100384
0.99825
0.99590
101470
1075143057.57663

98162.64013
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ex. Loaloa - Binomial HGLM (M1)

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Loaloa - Binomial HGLM (M1)

Model checking plots for random effects

Standardized Residual

Normal Probability Plot

Histogram of Studentized Residual

Frequency

A [ 1
Theoretical Quantiles

K] 0 1
Studentized Residual
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ex. Loaloa - Matern model (M2)

HGLM

Model for Mean

y~x1+x2+x3+x4+x5+x6 +(1|]LOC)

Lambda

Model for Mean
Response Variable
y -
Variable Selected
id x1
longitude x2
latitude x3
y x4
n x5
Loc x6

Random Effects
Loc

Distribution

binomial

@ Binomial Denominator
Binomial Denominator

n
Link Function
logit

Distribution for Random effects 1

Matern
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ex. Loaloa - Matern model (M2)

Model summary

Estimate from Mean Model
Estimate  Std.Error t-value p_val LL uL

(Intercept)  -10.33329 297671  -347137 000052 -16.16765 -4.49893

x1 -0.00002 000062 -0.03125 0.97507 -0.00123 0.00120
x2 0.00080 0.00148 0.54074  0.58868 -0.00210 0.00370
x3 -0.01165 0.00256  -4.55450 0.00001 -0.01667 -0.00664
x4 0.01092 0.00318 343410 0.00059 0.00469 0.01715
x5 11.00249 273818 401817  0.00006 563565  16.36933
x6 -3.02814 442386  -0.68450 049366 -11.69891 5.64263
Likelihood
-2ML -2RL cAIC

128903070 132456970  1105.72956
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ex. Loaloa - Matern model (M2)

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Loaloa - Matern model (M2)

Model checking plots for random effects

Normal Probability Plot Histogram of Studentized Residual
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ex. Gas Consumption - gas(pagel18).csv

@ Durbin and Koopman (2000) analyzed the lagged quarterly demand for gas in the
UK from 1960 to 1986.
y : Lagged quarterly demand for gas
year : 1960-1986
quarter : ql-q4
time : 108 times = 27 yearsx4 quarter
t43, t44 : 1 if time=43 or time=44
cosl, sinl : cos(27t/104) and sin(27t/104) (t : time)
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ex. Gas Consumption - gas(pagel18).csv

Model 1 for gas data

Durbin and Koopman (2000) considered a local linear-trend model with quarterly

seasonals which can be represented as a normal HGLM.

fr = 25:1 rj and 5 = Ejt:l(t — j + 1)p; are random effects for the local linear

trend, the quarterly seasonal g: with w, = Z?:o Gi—j.

re ~ N(0,Ar), pe ~ N(0, Ap), we ~ N(0, Aw), e ~ N(0, ¢¢)
Yi=a+Ff+si+q+ e

Lee, Nelder, and Pawitan (2017) add a linear trend St and found that the random

walk f; is not necessary. Thus, they considered a model
Ye=oa+Bt+ s+ g+ e

The residual plot displays apparent outliers, caused by a disruption in the gas supply
in the 3rd and 4th quarters of 1970.
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ex. Gas Consumption - gas(pagel18).csv

Model 2 for gas data

o Lee, Nelder, and Pawitan (2017) proposed to delete the random quarterly seasonals
and add further fixed effects to model the 1970 disruption and seasonal effects.

ye=a+tB+ ai+ tBi + d1l(t = 43) + &I(t = 44)
+ y1sin(27t/104) 4 ~2cos(2mt/104) + s¢ + e

o Lee, Nelder, and Pawitan (2017) further found extra dispersion in the 3rd and 4th
quarters, which led to a structured dispersion model.

log ¢: = + i
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ex. Gas consumption - Model 1

Make Variable

Make Variable Convert Data Type Select Rows

Make Variable m

New Variable Name

timel

Expression

time

Tools for Expression
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ex. Gas consumption -

HGLM

Model for Mean

y~time + (1]time) + (1]time1)

Model 1

Response Variable

Y

Variable

Y

year
quarter
143

t44
cosl
sinl
timel

Model for Mean

Selected

time

Random Effects

time timel

Distribution for Random effects 1

local linear trend

Distribution for Random effects 2

quarterly seasonal
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ex. Gas consumption - Model 1

Model summary

Estimate from Mean Model
Estimate  Std. Error t-value p_val LL
(Intercept) ~ 4.81532 0.03235 148.83164 000000  4.75190

time 0.00008 0.00723 0.01134 099096  -0.01409

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
time -5.35157 000474 0.18020  -29.69769
timel -11.68922 0.00001 0.51395  -22.74400

Estimate from Dispersion Model
Estimate Estimate(Exp)  Std.Error t-value

(Intercept) ~ -6.04355 0.00237 022534  -26.81980

uL

4.87873

0.01426
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ex. Gas consumption - Model 1

Model checking plots

Residuals vs Fitted

|Residuals| vs Fitted
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T
E
2
215
<
-
8
210
g
3
2
D o5
o 0.0
50 70 75 50 55 60 65 70 75
Scaled Fitted Values Scaled Fitted Values
Normal Probability Plot Histogram of Studentized Residual
. 25
.
oo 20
s
2
s
3
g
L1

K o 1
Theoretical Quantiles

A 0 1
Studentized Residual

276 / 569



ex. Gas consumption - Model 1

Model checking plots for random effects 1 and 2

Normal Probability Plot Histogram of Studentized Residual Normal Probabilty Plot Histogram of Studentized Residual

< . g H 1
¥ . H 3 :
g H ]
5 i 5
8 : 8

i ..

2 ¥ 13 T
Studentized Residual

i T 1} T
‘Theoretical Quaniles

‘Theoretical Quantiies Studentized Residual

277/ 569



ex. Gas consumption - Model 2

HGLM [ > | HGLM =

Model for Mean Model for Mean

y ~time + quarter + time:quarter + t43+ t44+ cos1+ sin1 + (1 time)

¥~ time + quarter + time:quarter + t43 + t44 + cos1 + sin1 + (1]time)
4

Model for Phi
Model for Phi
phi ~ quarter

phi ~ quarter
“ Model for Mean
Response Variable Model for Phi
y :
Residual Variance
— . ‘e on .

y B ftime S
vear (Quarter Variable selected
time1 time:quarter
45 ambda Y < quarter B
a4 year
st Setting time
sin1 43
4
cos1
sinl
timel

Random Effects

time

Distribution for Random effects 1

locallinear trend -
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ex. Gas consumption - Model 2

Model summary

Estimate from Mean Model

(Intercept)
time
quarterq2
quarterq3
quarterqd

143

t44

cost

sin1
time:quarterq2
time:quarterq3

time:quarterqd

Estimate

509974

0.01322

-0.09498

-0.48682

-0.35758

042188

043911

-0.12468

-0.09340

-0.00608

-0.00946

0.00039

Estimate for log(Lambda)

Estimate

time  -12.03959

Estim:

std. Error tvalue pval
011937 4272131 0.00000
000828 159647  0.11038
005046 -188216  0.05981
004558 -1068026  0.00000
007353 -486329  0.00000
006387 660531 0.00000
015970 -2.74953  0.00597
009393 -132728  0.18442
008115 -115092 024977
0.00082 -7.44657  0.00000
000073  -1287861  0.00000
000115 033954 073420
ate(Exp)  Std. Error tvalue
000001 069155 -17.40956

L

486577

-0.00301

-0.19388

057616

-0.50170

0.29669

-0.75213

-0.30879

-0.25246

-0.00768

0.01090

-0.00187

uL

533371

0.02945

0.00393

-0.39748

-0.21347

0.54706

-0.12609

005943

0.06566

-0.00448

0.00802

0.00265

Estimate from Dispersion Model

(Intercept)
quarterg2
quarterq3

quarterqd

Estimate

-5.85320

0.53927

093533

157617

Estimate(Exp)
000287
171475
254806

483638

std. Error

030149

041349

041985

0.41609

t-value

-19.41394

1.30419

222778

378806
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ex. Gas consumption - Model 2

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Gas consumption - Model 2

Model checking plots for random effects

Normal Probability Plot Histogram of Studentized Residual

Standardized Residual
Frequency

1 ] i 50 25 oo
Theoretical Quantiles Studentized Residual
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ex. Gas consumption - Model 2

Model checking plots (dispersion model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Prestige - prestige(pagel22).csv

@ Prestige data from R package "car” (Fox et al., 2016)
id : jobs
education : average education of occupational incumbents (year)
income : average income of incumbents ($)
women : percentage of incumbents who are women
prestige : Pineo-Porter prestige score for occupation
census : Canadian Census occupational code

type : type of occupation. bc(Blue Collar), prof(Professional, Managerial, and
Technical), we(White Collar), NA
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ex. Prestige - prestige(pagel22).csv

Additive non-parametric regression model
@ fi(-) and () are unknown functions.

e ¢ ~ N(0,0%)
yi = fi(x1i) + h(xi) + e

@ Suppose that cubic smoothing splines are used to fit these unknown functions f(-)
and f(-), which are characterized by singular precision matrices, P; and P>,

respectively (Lee, Nelder, and Pawitan, 2017).
@ This additive model can be fitted by using an HGLM.

yi= X,-TB + vii + voi + €

o x7 = (1,x1,x), vi ~ N(0,P]) and v» ~ N(0, P;") are random effects with P*

being the Moore-Penrose inverse of P.
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ex. Prestige - prestige(pagel22).csv

@

2Bnsed

25000

o The regression surface £ (x1;) + f(x2;) from the additive model shows that prestige
increases with income and education.
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ex. Prestige - cubic spline

Cubic Spline

Cubic Spline

Response Variable

prestige

Variable

income education

Estimating Method
Cubic Spline

Selection

Cubic Spline

Joint Spline
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ex. Prestige - cubic spline

Cubic Spline for mean

Cubic Spline for mean

prestige

prestige

0 10000 20000
income

10 12
education

14
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ex. Prestige - cubic spline

Covariance Kernel

Cubic Spline

Response Variable

prestige v

Variable

income education

Estimating Method

Covariance Kernel -
Selection
Squared Exponential -
Joint Spline

288 / 569



ex. Prestige - cubic spline

Covariance Kernel for mean Covariance Kernel for mean

prestige
prestige

4 10000 20000 6 8 10 12 14 16
income education
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Chapter 6. DHGLMs

@ We represent a DHGLM as {model(u), model(¢)}
@ The original GLM: {GLM(u), constant}

n(u) _ g(u)(u) _ x(u)ﬁ(u)
@ The joint GLM: {GLM(u), GLM (¢)}
" = g (p) = x® g n® = g9 (g) = X3
@ The HGLM: {HGLM(u), constant}
7’(u) _ X(“)B(“) 4+ Zm
@ The HGLM with structured dispersion: {HGLM((u)), GLM(¢)}
g = XU ) 4 7w 0 @ = X9

™ = X g™
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DHGLMs

o The DHGLM: {HGLM(y), HGLM()}

) = X g L Z(k) () n® = X@p@ 4 7))
™ = xR (@ = x5

o The DHGLM: {DHGLM(1), GLM(4)}

) = XU 4 7,00 @ = X 3®)
™ = XM g0 L 700,
™ = X

o The DHGLM: {DHGLM(1), HGLM(¢)}

,,]( B _ X(M)ﬂ(#) + ZzW n((ﬁ) _ X(¢)ﬁ(¢) 4 Z(@),(9)
7] - x®™ /8 + ZM N ,,.,(04) _ X(a),B(a)
,,]( T X(T)/B(T)

291 /569



ex. Crack growth continued

Review : joint GLM

77U = loguij = (()M) + /BYL) li—1
) = logey = 5 + Bt

DHGLM
o when v} ~ N(0,A) and v!?) ~ N(0, @),

nu = logpy = By + B ly—1 + v
0\ = logey = B + Bt + v\

@ cAIC selects this DHGLM as the best-fitting model.

@ We can conclude that heteroscedasticity between metallic specimens exists
significantly in the mean as well as in the dispersion.

292 /569



ex. Crack growth continued

@ By using the studentized deviance residuals, we can obtain model-checking plots of

the model objects.

Normal Probability Plot Normal Probability Plot

o2 ~ 4

Sample Quantiles
0
1

Sample Quantiles
-2
L

-2 -1

-4
(e

Theoretical Quantiles
Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

@ Most of the outliers in HGLM, caused by abrupt changes among repeated measures,
disapper when random effects are allowed in the model for the residual variance.
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ex. Crack growth continued - DHGLM

DHGLM [ > | DHGLM m

Model for Mean
Model for Mean
¥~ crack0 + (1lspecimen)

Y y ~ crackO + (1|specimen)
Model for Phi y
phi - cyce + (1/specimen) .
m phi ~ cycle + (1]specimen)
m Model for Mean -
Response Variable
v - .
Model for Phi
Veriable Selected Residual Variance
o 5 crack0 =
— ® Use phi -
cycle
o o Variable Selected
v
crackO
specimen
®
lambda

Random Effects

specimen

Distribution

©

Link Function

log -

Distribution for Random effects 1

inverse-gamma -
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ex. Crack growth continued - DHGLM

Model summary

Estimate from Mean Model Estimate from Dispersion Model

Estimate  Std. Error t-value p_val explll)  exp(UL) Estimate  Estimate(Exp)  Std.Error tvalue
(Intercept) ~ -5.64457 000007 ~-429.04924 000000 000345  0.00363 (Intercept) ~ -3.01495 004905 000735 -15.37856
crackd 240596 000005 23859171 000000 1087204 1131041 cycle -11.44552 000001 007700  -5.83308
Estimate for log(Lambda) Estimate for log(Alpha)
Estimate  Estimate(Exp) ~ Std.Error  t-value Estimate  Estimate(Exp) ~ Std.Error  t-value
specimen 344556 003189 000983 -9.81455 specimen  -0.40365 066788 000229 277475
Likelihood
2ML -2RL CAIC  Scaled Deviance df
161049303  -1602.52034  -1620.78341 21558663 21558663
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ex. Crack growth continued - DHGLM

Model checking plots (mean model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Crack growth continued - DHGLM

Model checking plots (dispersion model)

Residuals vs Fitted |Residuals| vs Fitted
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ex. Gas consumption continued

Review : HGLM
Ye=a+ tB+ ai + tfBi + d1l(t = 43) + 6/(t = 44)
+ y15in(27t/104) 4 ~2cos(27t/104) + s¢ + e;
log ¢r = ¢ +4i
DHGLM

o Consider the follow DHGLM, allowing heavy-tailed distriution for e;
o When v*) ~ N(0, ),

Vi =+ tﬂ + o + tﬂ,‘ —+ 51/(1‘ = 43) —+ 52/(t = 44)
+ y1sin(27t/104) + vyocos(2mt/104) + s¢ + e
log e = + i + v

@ cAIC selects DHGLM as the best-fitting model.
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ex. Gas consumption continued

@ The likelihood-ratio test for Hp : o = 0, based on the restricted likelihood, rejects
the null hypothesis (deviance difference : 18.8 > x3;(1) = 2.71 with significant level

0 = 0.05)
Normal Probability Plot Normal Probability Plot
5
©® - 0 (o)
o
o
3 ~ ocao é _
3 g °7
2 o o 2
g £ T
© — [}
(9] [ (\Il -
Fq.° o0
° T T T T T T T

Theoretical Quantiles Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

@ We see that a big outlier in HGLM disappeared under the DHGLM.
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ex. Gas consumption continued - DHGLM

DHGLM = DHGLM [ > |

Model for Mean Model for Mean

¥~ time + quarter + t43 + t44 + cos1+ sind + time:quarter + (1]time) ¥~ time + quarter + t43 + t44 + cos1 + sin1 + time:quarter + (1]time)
Model for Phi Model for Phi

phi ~ quarter + (1]time) phi~ quarter + (1]time)

Mean

Model for Mean Model for Phi
Response Variable Residual Variance
Variable Selected Variable Selected

year quarter year
t44 43
:

cos1 t
sint cost
time:quarter sin1

Random Effects Random Effects

time time

Distribution for Random effects 1

local linear trend -
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ex. Gas consumption continued - DHGLM

Model summary

Estimate from Mean Model Estimate from Dispersion Model

Estimate Std. Error t-value p_val L uL Estimate Estimate(Exp) Std. Error t-value
(Intercept) 510733 041817 4321917 000000 487571 533894 (intercept)  -6.25787 000192 023684 2642287
time 001264 000831 152148 012814 -000364 002892 quartera2  0.92699 252689 033477 276903
quarterq2 009426 004691 200918 004452 018621 -0.00231 quarterqd 122685 341047 033477 366475
quarterq3 048740 004231 -1151966 000000 -057033 -0.40447 quarterqd 160346 497022 033477 478975
quarterq4 035660 006854  -520263 000000 049095 -022226
3 041300 00575 75430 000000 030569 osp0s0  Loumateforloglalpha)
ta4 045434 014282 318123 000147 073426 -0.17441 Estimate | Estimatelfp) | StdhEor | tvahe
cost 013162 009477  -138886 016488 031738 005413 time | 166848 018853 | 415465 | 040159
sint 008616 008237  -104595 029558 024761 007529

time:quarterq2  -0.00609 0.00076 -7.95877 000000 -0.00759  -0.00459
time:quarterg3  -0.00945 000069 -1372978 000000 -001080  -0.00810

time:quarterqd 000051 000108 047010 063828 -000161 000263

Estimate for log(Lambda)
Estimate  Estimate(Exp) ~ Std. Error tvalue

time  -12.76653 0.00000 076775  -16.62841
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ex. Exchange rate - exch(pagel48).csv

@ Daily observations for the weekday closing exchange rates for the U.K. Sterling/U.S.
Dollar from 1/10/81 to 28/6/85 (Harvey et al., 1994).

rt : Exchange rate at time t

yt : Mean-corrected returns. y: = 100 (Iog(rt/rt_l) — %27:1 Iog(r,-/r,-_l))
ytl @ yeq

yti2 :y?

date : 936 observations

@ Consider the model
Yt = v ¢t2t

where z; is the standard normal random variable and ¢; is a volatility at time t.
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ex. Exchange rate - exch(pagel48).csv

ARCH(1) model
@ Engle (1982) introduced the ARCH model of order 1.

de = B + By,

@ This is a joint GLM GLM(u = 0), GLM(¢), which can be fitted by specifying the
identity link function for GLM(¢) and fixing the mean null.

GARCH(1,1) model
o The ARCH(1) model was extended to the GARCH(1,1) model by Bollerslev (1986).

¢ = Béd)) + ﬂ%qﬁ))’t{l + Y1
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ex. Exchange rate - exch(pagel48).csv

o By letting 3. = 8\ /(1 — p) with p = 8 + 4,

Vt(¢) = e — 5S(¢)
= 66" + By + vder — 55"
= 55+ BOyE 1+ p(¢e-1 — 55D = B per — (1 - p)B5"?
)+ 801+ pldea — 87 = B per — B
= p(¢e1— B D) + B (1 — be)

— el

where rt(¢) = BYM (Y21 — de-1).
@ Thus, the GARCH(1,1) can be written as a dispersion model with correlated random

effects
be = Bg(d)) + V£¢)

where v§¢) = pvt(f)1 + rt(¢).
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ex. Exchange rate - exch(pagel48).csv

@ To avoid negative volatility, we can consider the exponential GARCH (EGARCH),
with a log link n§¢) = log ¢+

0 = 867 + By + i)

which is equivalent to
) = g1 4 o)

Stochastic volatility (SV) model
o If we take r{® ~ N(0, @), i.e., V@) = pvt(f)1 +r? ~ AR(1), we have the stochastic
volatility (SV) model originating from Harvey et al. (1994).
@ For the data, SV model has cAlIC = 1807 which has less than cAIC = 2006 for
ARCH and cAIC = 1863 for GARCH models, so that SV model is the best one

among alternative models.
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ex. Exchange

DHGLM

Modelfor Mean

Model for Phi

phi-yt12

Model for Mean
Response Variable

v

Variable Selected

©)

DHGLM

Modelfor Mean

vie1

Model for Phi

phi-yt12

rate - ARCH(1) model

[ > | DHGLM

Modelfor Mean

vie1

Model for Phi

phi-yt12

Model for Phi
Residual Variance
ol

Variable Selected
i B iz 3

Link Function

dentity

Additional Settings
Method of Fiting Dispersion Model

deviance

REMLorML

REML
© FixBetaValues

o
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ex. Exchange rate - ARCH(1) model

Model summary

Estimate from Mean Model

Estimate  Std.Error  t-value  p_val LL
(Intercept) 0.00000 0.00000 NA NA - 0.00000
Estimate from Dispersion Model
Estimate  Estimate{Exp)  Std.Error t-value
(Intercept) 1.70702 5.51249% 0.02027 84.21354
ytl2 0.04713 1.04826 0.03599 1.30966
Likelihood
-2ML -2RL cAIC  Scaled Deviance
2010.36290  2016.07535 2004.36290 $43.00000

uL

0.00000

df

243.00000

307 /569



ex. Exchange rate - ARCH(1) model

Model checking plots (dispersion model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted

3
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3 101
. o
3 .
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e e s
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.
o ) . .
et e o . o . .
05 10 20 05 10 5 20
Scaled Fitted Values Scaled Fitted Values
Normal Probability Plot Histogram of Studentized Residual
154
4001
.
104
3004
3
2
. H
3
3
2004
| &

1004

°
Theoretical Quantiles

H 10 15
Studentized Residual
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ex. Exchange

DHGLM
Modelfor Mean

Model for Phi

P~ yt12-+ (1/date)

Model for Mean
Response Variable

v

Variable Selected

DHGLM
Modelfor Mean

v-1

Model for Phi

o~ yt12-+ (1/date)

rate - GARCH(1,1) model

Model for Phi

Residual Variance

o
Variable Selected
i iz
v

date

Random Effects
date

Link Function
og

Distribution for Random effects 1

cARCH

DHGLM
Model for Mean

yto1

Model for Phi

phi-yt12.+ (1/date

Mean
Model for Phi
Residual Variance

@ Use o

Variable

Selected
iz
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ex. Exchange rate - GARCH(1,1) model

Model summary

Estimate from Mean Model

Estimate  Std.Error  t-value p_val LL uL
(Intercept) 0.00000 0.00000 NA NA 000000 0.00000
Estimate from Dispersion Model
Estimate  Estimate(Exp)  Std.Error t-value
(Intercept) 0.0078% 1.007%93 0.00447 1.76607
yt12 0.06302 1.06505 0.014%8 4.20648
gamma 0.91732 2.50258 001765  51.95964
Likelihood
-2ML -2RL cAlC df
1865.41453  1870.01112  1863.01993  943.00000

310/569



ex. Exchange rate - GARCH(1,1) model

Model checking plots (dispersion model)

Studentized Residual

Standardized Residual

Residuals vs Fitted

|Residuals| vs Fitted

-]
3
-
3
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3
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Normal Probability Plot Histogram of Studentized Residual
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ex. Exchange rate - Stochastic volatility (SV) model

DHGLM =23 DHGLM [ > | DHGLM =

Modelfor Mean Modelfor Mean Model for Mean
-1 -1 -1

v v
Modelfor Phi Modelfor Phi Model forPhi
Phi- 1+ (tjdate Phi- 1+ (tjdate phi- 1+ (1ldate

Model for Mean

Response Variable

Model for Phi o Additional Settings

Residual Variance Method of Fiting Dispersion Model

- Lambda

" - o sedree -
Vartsble seected Vartsble selected REMLor L
" I - REML -
w v
iz aste % et Values
e iz

o

Random Effects

date
Link Function
og

Distribution for Random effects 1

ARy -
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ex. Exchange rate - Stochastic volatility (SV) model

Model summary

Estimate from Mean Model
Estimate  Std. Error t-value p_val LL UL

(Intercept)  -0.89366 0.20315  -4.39894 0.00001 -1.29184 -0.49548

Estimate for log(Alpha)

Estimate  Estimate(Exp)  Std.Error t-value

date  -3.50563 0.03003 041628 -842144
Likelihood

-2ML -2RL cAIC  Scaled Deviance df
1805.02586  1810.71920  1807.02588 943.00000  1805.02588
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ex. Orthodontic growth continued

Review : HGLM with random slope model
yi = BiFi + B2FiAj + BsMi + BaMiAj + vai + Ajvai + €5

DHGLM

@ Noh and Lee (2007) showed that a robust analysis against such outliers can be
obtained by adding random effects to the residual variance ¢;.

@ Thus, we consider the following DHGLM

vi = BYVF + B FiAy + B M; + B MiA; + 8 + Al + e
log(¢y) = A" + v

where v,(¢) ~ N(0, ).
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ex. Orthodontic growth continued

@ Among models we considered, cAlC selects DHGLM as the best fitting model.

@ The likelihood-ratio test for Hp : o« = 0 based on the RL, rejects the null hypothesis
(deviance difference : 37.9 > x35(1) = 2.71 with significant level § = 0.05)

Sample Quantiles

Normal Probability Plot Normal Probability Plot

Sample Quantiles
0
1

-2 -
1
o

Theoretical Quantiles Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

o Model checking plots for the DHGLM show that all large outliers (whose sizes are

bigger than 4) disappear.
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ex. Orthodontic growth continued - DHGLM

DHGLM
Model for Mean

distance ~ -1+ M+ Mage + F+ Fage + (1ISublect] + (agelSublect)

Model for Phi

phi~ 1+ (1]Subject)

Model for Mean
Response Variable

distance

Variable Selected
M
Mage

F

Fage

Random Effects
Subject
@ Random siope Model
Without Random Intercept
Random slope
age
Distribution
gaussian
Link Function

dentity

Distribution for Random effects 1

gaussian

Distribution for Random effects 2

gaussian

@ Nolntercept Model

DHGLM

Model for Mean

distance ~

Model for Phi

phi~ 1+ (1lsubject)

@ Use

<M+ Mage + F = Fage + (1]Subject) + (agelSubject

Model for Phi
Residual Varlance

phi

Variable Selected

Random Effects

Subject
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ex. Orthodontic growth continued - DHGLM

Model summary

Estimate from Mean Model Estimate from Dispersion Model
Estimate  Std. Error t-value p_val L uL Estimate  Estimate(Exp) ~ Std.Error  t-value
M 17.33344 107314 1615204 000000 1523008  19.43680 (Intercept) 042787 153399 021053  4.57503

Mage 0.70132 0.09875 7.10176  0.00000 0.50776 0.89487
Estimate for log(Alpha)

F 1750938 130955 1337050 000000 1494266 2007610
Fage 046856 010018 467729 000000 027221  0.66490 Estimate  Estimate(Exp) Std.Error  t-value
Subject -1.33456 0.26327 0.71883 -1.85658

Estimate for log(Lambda)

B . Likelihood

Estimate  Estimate(Exp)  Std.Error t-value
Subject 184123 630429 157253 117087 2ML “2RL GAIC | Scaled Deviance df
subjectL | 340918 003307 | 031072 | 1097195 34695477 35273457 35268789 7553118 7553118
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ex. Schizophrenic behavior - schizophrenic.csv

@ Schizophrenic behavior data from an eye-tracking experiment with a visual target

moving back and forth along a horizontal line on a screen (Rubin and Wu, 1997).

@ The outcome measurement is called the gain ratio, and it is recorded repeatedly at
the peak velocity of the target during eye-tracking under three conditions (PS:plain
sine, CS:color sine, TR:triangular).

o In the experiment, exch subject is exposed to 5 trials, usually 3 PS, 1 CS, and 1 TR.

@ During each trial, there are 11 cycles. However, for some cycles the gain ratios are
missing beacuse of eye blinks.

@ On average, there are 34 observations out of 55 cycles for each subject (2906
observations from 4730 cycles).

@ We assume (for simplicity) that the missing data are missing at random (MAR).
Under MAR assumption, we can perform the analysis using only observed data.
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ex. Schizophrenic behavior - schizophrenic.csv

y : gain ratio = (eye velocity)/(target velocity)
x1 : 1/2(PS), -1/2(CS), O(TR)

x2 1 -1/3(PS or CS), 2/3(TR)

sex : -1/2(female), 1/2(male)

time : measurement time

schiz : 1(schizophrenic), 0(non-schizophrenic)

subject : 43 non-schizophrenic subject (22 females and 21 males) and 43 schizophrenic
subject (13 females and 30 males)
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ex. Schizophrenic behavior - schizophrenic.csv

HGLM

@ yj : gain ratios for the j-th measurement of the i-th subject.

yi = B8 +xasBl + B + 88 + schiB) + schy - xay B
+ sch; - xzﬂé“) + v,.(“) + e

where v ~ N(0, \) is the subject random effect, e; ~ N(0, ¢) is a white noise.

1

@ We find that schizophrenic patients have a larger variance.

log(¢r) = B5” + schiBL”)
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ex. Schizophrenic behavior - schizophrenic.csv

DHGLM

@ Psychologists have known for a long time about large variations in
within-schizophrenic performance on almost any task (Silverman, 1967). Thus,
abrupt changes among repeated response may be peculiar to schizophrenics and
such volatility may differ for each patients.

@ Such heteroscedasticity among schizophrenics cannot be modeled by the fixed effect
model, but can be modeled by a DHGLM, introducing a random effect in the

dispersion.

o When v,(¢) ~ N(0, @),

log(i) = B + schiB\?) + schiv(®)

° v,(“) and v,-w) are independent.
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ex. Schizophrenic behavior - schizophrenic.csv

@ cAIC shows that DHGLM has a better fit than HGLM.

@ By using the studentized deviance residuals, we can obtain model-checking plots.

Normal Probability Plot Normal Probability Plot
< o o
o~ N7
@ @
2 2
g °1 § o
S S
S | <]
o )
a [~} (\‘l -
§ T §
[} [}
° <
¢4 o [ )
o o
T T T T T T T T T T T T
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

Figure: Normal probability plots for HGLM and DHGLM

@ We see that most of the outliers in HGLM, caused by abrupt changes among
repeated measures, disappear when random effects are allowed in the model for the

residual variance.
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ex. Schizophrenic behavior - HGLM

DHGLM m DHGLM m

Model for Mean Model for Mean
y ~ x1+x2 + time + schiz + schizx1 + schiz:x2 + (1|subject) y~x1+x2+time + schiz + schiz:x1 +schiz:x2 + (1]subject)
2 A
Model for Phi Model for Phi
phi ~ schiz phi ~ schiz
& “
m Model for Mean Model for Phi
Response Variable Residual Variance
Variable Selected Variable Selected
y X1 Lambda y 'schiz
sex X2 x1
schiz sex
schizzx1 time
schizx2 subject

Random Effects

subject
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ex. Schizophrenic behavior - HGLM

Model summary

Estimate from Mean Model

(Intercept)
x1

x2

time

schiz
xLischiz

x2:schiz

Estimate

081126

0.00642

-0.12145

0.00243

0.03609

002897

0.00725

Std. Error

001352

0.00453

0.00494

0.00044

001921

0.00702

0.00786

Estimate for log(Lambda)

subject

Estimate

-4.83967

Estimate(Exp)

000791

t-value

59.99508

141772

-24.60317

-5.56600

-1.87868

-412673

092225

Std. Error

0.15662

p.val
0.00000
0.15627
0.00000
0.00000
0.06029
0.00004

0.35640

t-value

-30.90096

L

078476

-000246
-0.13112
-000329
007375
004272

002265

uL

0.83776

001530

-0.11177

000157

0.00156

001521

0.00816

Estimate from Dispersion Model

Estimate  Estimate(Exp) St

(intercept) ~ -5.32025 000489
schiz 025104 128536
Likelihood
2ML 2RL cAIC

655042528  -6488.46883  -6780.31432

td. Error t-value

003667  -14508353

005337 470382

Scaled Deviance

2817.46534

df

2817.46534
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ex. Schizophrenic behavior - HGLM

Model checking plots (mean model)

Studentized Residual

‘Standardized Residual

Residuals vs Fitted

[Residuals| vs Fitted

Normal Probabilty Plot

Histogram of Studentized Residual

|Studentized Residual|

)
Scaled Fitted Values

Normal Probability Plot

Scaled Fitted Values

Histogram of Studentized Residual

Frequency

‘Standardized Residual

Frequency

2 1 H
Theoretical Quantiles.

o 2s
Studentized Residual

T 1 T
‘Theoretical Quantes

1 3
Studentized Residual
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ex. Schizophrenic behavior - HGLM

Model checking plots (dispersion model)

Residuals vs Fitted |Residuals| vs Fitted

Studentized Residual
— 0 ®
|Studentized Residual|
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ex. Schizophrenic behavior - DHGLM

DHGLM m DHGLM [ >n |

Model for Mean Model for Mean

¥~ X1+x2 + time + schiz + schizax1 + schizx2 + (1]subject)
¥~ X1+x2 + time + schiz + schiz:x1 + schiz:x2 + (1]subject)

Model for Phi
Model for Phi

phi ~schiz + (schizlsubject)

Z
Mean

Model for Phi
Model for Mean Residual Variance
Response Variable ¥ Use phi -
y -

Variable Selected
Variable Selected pd

ing x2
v " 7 , sex

phi ~ schiz + (schizlsubject)

sex x2 time
subject time subject
schiz
schizx1
schizix2

@ Random Effects

subject
Random Effects  Random Slope Model
subject # Without Random Intercept

Random Slope

schiz
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ex. Schizophrenic behavior - DHGLM

Model summary

Estimate from Mean Model

Estimate  Std. Error
(Intercept) 081229 -0.00012
x1 0.00307 0.00070
x2 -0.11713 0.00068
time -0.00227 0.00007
schiz -003716  -0.00017
x1:schiz -0.01952 0.00117
x2:schiz -0.00852 0.00131

Estimate for log(Lambda)

Estimate  Estimate(Exp)

subject  -4.85276 0.00781

t-value

-6936.68116

438086

-171.54402

-33.49231

219.21004

-16.65907

-6.5091%

Std. Error

0.15663

p_val
0.00000
0.00001
0.00000
0.00000
0.00000
0.00000

0.00000

t-value

-30.98290

LL

0.81251

0.00170

-0.11847

-0.00240

-0.03682

-0.02181

-0.01108

uL

0.81206

0.00444

-0.11579

-0.00213

-0.03749

-001722

-0.00595

Estimate from Dispersion Model

Estimate  Estimate(Exp)  Std. Error t-value
(Intercept) ~ -5.46093 0.00425 0.08730  -65.11381
schiz 029759 1.34661 0.12460 3.23937
Estimate for log(Alpha)
Estimate  Estimate(Exp)  Std.Error t-value
subject  -1.12301 0.32530 0.08297  -13.53518
Likelihood
-2ML -2RL €AIC  Scaled Deviance
-7151.04752  -7087.38540  -7280.78039 2948.36080

df

2817.49180
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ex. Respiratory continued

Review : HGLM

log (pUP> = 8§ + B ert; + B msex; + 51 age,
i

+ ﬂﬁu)centen + ﬂé“)base; + Béu))’i(jfl) Tvi
log \i = A + BV age,

DHGLM
o With binary data, it is difficult to identify the distribution of random effects.

@ The use of a heavy-tailed distribution for random effects by allowing random effects
for A, removes sensitivity of the paramter estimation to the choice of random effect
distribution (Noh et al, 2005).

o For binary data, they showed that GLMM estimators can give serious biases if the

true distribution is not normal.
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ex. Respiratory continued

@ Consider the following DHGLM,

log <1Pup> BO“) + ,Biu)trt, + ﬂ2 msex; + B(”)age,—
— Pi

+ 64 center; + ﬁé“)base, + B8Py + vi
log \i = ﬂo + 51 age; + v,.
where v ~ N(0, \;) and v ~ N(0, 7).

@ The likelihood-ratio test for Hy : 7 = 0, based on the restricted likelihood, rejects the
null hypothesis (deviance difference : 3.3 > x35(1) = 2.71 with significant level
6 =0.05)
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ex. Respiratory continued

Normal Probability Plot Normal Probability Plot
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Figure: Normal probability plots of A for HGLM and DHGLM

@ We see that liarge outliers, and anunpleasane pattern in the normal probability plot
under the HGLM, disappear under the DHGLM. Thus, the DHGLM is preferred.

o Furthermore, there are apparent differences between parameter estimates.
@ In this case, we should report the results from the DHGLM because a distributional

assumption of random effects is hard to identify with the binary data.
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ex. Salamander continued

Review : HGLM

Iog(lpiﬂ;> = Bo + Fi 4+ Mj + (FM); + vj + Vit
~ P

DHGLM
@ For this binary set, we fit a DHGLM model
o (25 ) =+ A0+ )
log(Ai) = By’ + bjy
log(Amix) = B + b,

where v ~ N(0, Asx), v ~ N(O, A ), b ~ N(0,7¢), and bOY) ~ N(0, 7).

mjk
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ex. Salamander continued

@ The cAIC difference between HGLM and DHGLM is less than 1, so that there would
be no advantage to use the heavy-tailed distribution, compared with the normal
distribution.

@ The likelihood-ratio test for Hy : 7+ = 0,7, = 0 based on RL does not reject the null
hypothesis (deviance difference : 2.4 which has p-value of
0.243 = 0.5 x P(x*(1) > 2.4) + 0.25 x P(x?) > 2.4) (Self and Liang, 1987).

o Estimates between HGLM and DHGLM are slightly different, which also strongly
indicating the adequacy of normality for the distribution of random effects.
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ex. Respiratory continued - DHGLM

B [ > | DHGLM =

Model for Mean
Model for Mean
- trt s+ age + center + base +past + (1patint)
2 y ~ trt + msex + age + center + base + past + (1|patient)
Model for Lambda
lambda - age + 1|patient Model for Lambda
lambda ~ age + (1]patient)

Model for Mean -

Response Vrsle
z z Model for Lambda

Variance of Random Effect

patien: L =
e = Lambda b .
asline conter
" e @l Use Variable Selected

patient < age =

oo

o v
patient base

Link Function Random Effects

logt - patient

Distribution for Random effects 1
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ex. Respiratory continued - DHGLM

Model summary

Estimate from Mean Model Likelihood
Estimate  Std.Error t-value p_val exp(LL) exp(UL) -2ML -2RL CAIC  Scaled Deviance df
(intercept) ~ -0.28790 0.08414 -0.17108 086416 002770  20.29488 39002822 39677600 412.12734 30225479  385.59748
trt 160123 0.03203 249977 001243 141305 17.40414
msex -0.53979 0.05149  -052417 060016 007745 4.38679
age -0.06015 0.00161 -1.87034 006144 088410 1.00289
center 0.67215 0.03269 102794 030398  0.54365 7.05513
base 241089 0.03359 358827 000033 298621 41.58647
past -0.05088 0.01690  -0.15058  0.88031  0.49009 1.84302

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
(Intercept) 0.01495 101507 008124  -3.60966
age 006717 106948 0.00238 191634

Estimate for log(Tau)
Estimate  Estimate(Exp)  Std.Error t-value

patient  -1.24592 0.28768 302116  -0.41240
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ex. Bacteria continued

Reviewd : Binomial GLMM
o pj = P(y; = 1|v)

log <lfup) = fBo + Sul(i = drug) + B21(i = drug+) + vi
ij

where v; ~ N(0, \)
DHGLM
e We fit a follow DHGLM model.

log (pjp> - 3”) + B 1(i = drug) + B 1(i = drug+) + v
ij
log(\i) = N4 V( )

where v ~ N(0, \j) and v ~ N(0, 7).

336 /569



ex. Bacteria continued

@ cAIC from the HGLM is 205.0, while that from the DHGLM is 204.5.
@ The cAIC difference is less than 1, so that there would be no advantage to use the

heavy-tailed distribution.

@ The likelihood=ratio test for Hp : 7 = 0 based on the RL, does not reject the null
hypothesis (deviance difference : 0.8 < x35(1) = 2.71 with significant level
0 = 0.05).

o Estimates between HGLM and DHGLM are only slightly different, which also
strongly indicates the adequacy of normality for the distribution of random effects.
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ex. Bacteria continued - DHGLM

DHGLM [ > | DHGLM E3

Modelfor Mean Modelfor Mean
Y-t 1) Y- trt+(ID)
4
Model for Lambda Model for Lambda
lambda 1+ (1]D) lambda ~1+(110)

Model for Mean Model for Lambda

Response Variable Variance of Random Effect

y - lewiin lambda -
Variable Selected @ Use Variable Selected
W < t < < =

a»
hilo St
week
D
v

g

o©)

Random Effects Random Effects

D [}

Distribution
binomial -
Binomial Denominator

Link Function

logit -

Distribution for Random effects 1

gaussian -
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ex. Bacteria continued - DHGLM

Model summary

Estimate from Mean Model

Estimate  Std.Error  t-value pval  explLL)
(intercept) ~ 225710 001927 585618 0.00000 448920
trtdrug 121503 002672 227364 0.02299  0.10410
tridrugt 073329 002750 133332 018243  0.16345

Estimate for log(Lambda)
Estimate Estimate(Exp)  Std.Error t-value

(Intercept)  -0.39770 0.67186 0.03419  -2.67508

Estimate for log(Tau)

Estimate  Estimate(Exp)  Std. Error t-value
ID  -2.18220 0.11279 370950  -0.58827
Likelihood
-2ML -2RL €AIC  Scaled Deviance df
211.94948  212.20276  204.57077 178.61018  206.01948

exp(UL)
20.33882
0.84568

141151
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ex. Epilepsy continued

log(ui) = (M) + Xs; BB + XT,B + XA,ﬂE\”) + xv; ﬁ(”) + XxB;T; 537— + V + Véu)

log( A1) = By (’\1 + v and

NB-gamma HGLM

D G(\i), vi(>\1) =0,
Poisson-normal DHGLM

" N0, Ars), v ~ N(O,7),
Poisson-normal-gamma DHGLM

D N(O,/\li), Vi()‘l) -0,
Poisson-gamma-gamma DHGLM1

D G(\i), vi(>\1) -0,
Poisson-gamma-gamma DHGLM2

M 6(w), v ~ N(0,7),
quasi Poisson-normal DHGLM

“ o N0, A1), v ~ N(0, 1),

log(Nai) = A3 + v/

M o G(Aay), and v(/\Z) =0

VI,J(,“) =0, and v,-Y‘Z) =0
")~ G(Agj), and v ~ N(0, 72)
")~ G(Ayj), and vw) ~ N(0,72)
")~ G(Myj), and vw) ~ N(0,72)

i

and var(yj| v,.(

) =
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ex. Epilepsy continued

@ The likelihood-ratio test for Hp : 72 = 0 based on the RL rejects the null hypothesis
(deviance difference : 32.4 > x3;(1) = 2.71 with significant level § = 0.05 between
NB-gamma HGLM and Poisson-gamma-gamma DHGLM1).

@ The likelihood-ratio test for Hy : 71 = 0 based on the RL doesn't rejects the null
hypothesis (deviance difference : 0 between Poisson-gamma-gamma DHGLM1 and
Poisson-gamma-gamma DHGLM?2).

@ Thus, the likelihood-ratio test selects the Poisson-gamma-gamma DHGLM1.

Model cAlC rAlIC
NB - gamma HGLM 1163.9 1274.8
Poisson - normal DHGLM 1270.5 1349.1

Poisson - normal - gamma DHGLM 1183.0 1282.7
Poisson - gamma - gamma DHGLM1 11442 12444
Poisson - gamma - gamma DHGLM2 1146.1 1246.4

quasi Poisson - normal DHGLM 1217.2 1319.6
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ex. Epilepsy continued - Poisson-gamma-gamma DHGLM1

DHGLM

Model for Mean

y~B+T+A+V+BT +(tlpatient) + (1fid)

Model for Lambda

lambda ~ 1+ (1]id)

Model for Mean

Response Variable

v
Variable

v
patient
]

®®

Selected
B

T

A

v

BT

Random Effects

patient id

Distribution

poisson

Link Function

log

Distribution for Random effects 1
gamma
Distribution for Random effects 2

gamma

DHGLM

Model for Mean

Y~B+T+A+V+ BT+ (tlpatient) + (1]i)

Model for Lambda

lambda -1+ (1)

Model for Lambda
Variance of Random Effect

—— lambda

@ Use Variable Selected
v
T
8
A
v
patient
id
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ex. Epilepsy continued - Poisson-gamma-gamma DHGLM1

Model summary

Estimate from Mean Model Likelihood
Estimate  Std.Error  t-value pval  explll)  exp(UL) 2ML -2RL CAIC  Scaled Deviance
(Intercept)  -1.35734 000938 -144754 014775 004096 161693 120605130 122457741  1142.96896 130.17049
B 089413 000099 899401 000000 201229  2.97123
T 081412 000319 -254904 001080 023690 0.82851
A 051345 000278 184921 006443 096971 2.87965
v 002627 000016 -1.65364 009820 094421 100488
BT 032160 000159 201924 004346 100948  1.88471

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
patient  -1.52895 021676 001228 722308
id -173502 017640 000449  -22.40033

Estimate for log(Tau)
Estimate  Estimate(Exp)  Std.Error t-value

id -219973 011083 370702  -0.59340

df

9087245
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ex. Stroke - stroke(pagel67).csv

o Approximately 30% of hospitalized patients due to acute ischemic stroke are placed
in the risk of early neurologic deterioration (END) at their hospital stay.

@ The patient’s risk to END can be monitored by following their blood pressure (BP).

@ Data has systolic BP (SBP) with time in hours after arriving at the emergency room
for two stroke patients (one is END; the other is non-END).

time, timel : Times after arriving at the emergency room (hrs)
y1l : SBP of END stroke patient
y2 : SBP of non-END stroke patient
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ex. Stroke - stroke(pagel67).csv

Joint spline model

@ For detection of changes in SBP with respect to time, we use cubic splines
(Silverman, 1967; Green and Silverman, 1994) not only for the mean changes but
also for variance changes, using the joint cubic splines model (Lee and Nelder, 2006).

@ y: : SBP measurement at time t, e; ~ N(0, ¢:)

o fm(t) and f4(t) : unknown functions of the mean and variance.
¥e = fm(t) + e and log ¢: = f4(t)

o For joint fitting of the mean p; and variance ¢;, we use the DHGLM.

pe = B + B 4 v

g 6 = £} wnw)

where vt(“) vt(d)) is the random component with mean 0 and a singular precision

matrix P/AW [P/A)] (Lee, Nelder, and Pawitan, 2017).
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ex. Stroke - stroke(pagel67).csv

mean variance

Figure: Joint cubic splines for SBP (END: solid line, non-END: dashed line)

@ Mean patterns for END and non-END patients are similar, so that it has been very
difficult to predict the potential END patients. However, it can be noticed from the
plot that the END patient has higher variance in SBP than non-END patient.

@ Thus, the variance of the SBP is used as a covariate for predicting an END event,
which greatly prevents the occurrence of END patients in the emergency room in

Korea.
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ex. Stroke - joint spline

Joint spline for y; and y»

Cubic Spline Cubic Spline
Response Variable Response Variable

v1 v ¥2 -
Variable Variable

time time
Estimating Method Estimating Method

Cubic Spline v Cubic Spline v
Selection Selection

Cubic Spline - Cubic Spline -
¥ Joint Spline: @ Joint Spline
Estimating Method Estimating Method

Cubic Spline - Cubic Spline ~
Selection Selection

Cubic Spline - Cubic Spline v
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ex. Stroke - joint spline

Cubic spline for mean of y; and y»

Cubic Spline for mean Cubic Spline for mean

time time
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ex. Stroke - joint spline

Cubic spline for dispersion of y1 and y»

Cubic Spline for dispersion Cubic Spline for dispersion

Dispersion
Dispersion

time time
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ex. Curve - curve.csv

@ The raw data are generated from normal distribution with the true mean and
variance, described in plot.

50 150

25 125
s g

3 & 100
s 0 5
>

75

25
50
0 25 50 75 100 0 25 50 75 100
X X
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ex. Curve - curve.csv

Raw data
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ex. Curve - joint spline

Setting for cubic spline and joint spline

Cubic Spline Cubic Spline
Response Variable Response Variable
v e Yy e
Variable Variable
x x
Estimating Method Estimating Method
Cubic Spline v Cubic Spline v
Selection Selection
Cubic Spline - Cubic Spline -
Joint Spline @ Joint Spline

Estimating Method

Cubic Spline ~
Selection
Cubic Spline v
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ex. Curve - joint spline

Cubic spline results

Cubic Spline for mean
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ex. Curve - joint spline

Joint spline results

Cubic Spline for mean

354 /569



An extension of linear mixed models via DHGLM

@ The IWLS algorithm gives fast computations using GLM estimations.
(¢

«—
a

Figure 6.11 Interconnected GLMs for fitting DHGLMs.
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An extension of linear mixed models via DHGLM

@ Consider the DHGLM introduced in Chapter 1(1.4)
y = XWgw) ¢ z)yk) 4 o
e ~ N(0,exp(X(?)3(9) 1 z(9),(9)y)

with v(®) ~ N(0, M), v(®) ~ N(0, al), cor(v(®), v(#)) = 0
@ We specify the h-likelihood to show that it is rather easy to specify even though the model
is rather advanced.

h = log(f(y|v(*), v(?))) + log(£(v{")) + log(f(v(?)))
_ %bg(w\) _ %(y (x50 1 Z) 0y T -1
X (y — (X(H)B(M) 4+ z® V(u)))
m 1 T
— Zlog(3) = 55 (V)T (V)
m 1 T
— 2 log(a) = 55 (V)T (W)

where V = diag(exp(X(#)8(#) 4 Z(#)y(9))),

@ We could allow correlations among all random components e, v(#), v(#) which leads to
many other interesting models to explore.
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Chapter 7. MDHGLMs

@ As a most general model for a single response, we presented a DHGLM, which has a
great room for further generalization by including more general correlation patterns
among random effects.

@ In this chapter, we introduce multivariate models for various types of responses
including continuous, proportion, counts, events, etc.

@ We show that general multivariate models can be generated by connecting DHGLMs
for various responses with correlated random effects.

o Correlation bewtween random components is essential in the definition of joint
models, where correlations among multivariate responses are modeled via correlated
random effects.
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Ethylene glycol - EG(pagel78).csv

o Data from a study on the developmental toxicity of ethylene glycol (EG) in mice
(Price et al., 1985).

o Times-pregnant CD-1 mices were dosed by gavage with EG in distilled water on
gestational days 6 through 15.
litter, id : 94 dams
dose : dose (g/kg)
yl : fetal weight (g)
y2 : 1(malformation), O(not)

dose2 : dose?

Malformations Weight (g)

Dose (g/kg) Dams Live No. % Mean (5.D)
0.00 25 207 1  (0.34) 0972 (0.0976)
0.75 24 276 26  (9.42) 0.877 (0.1041)
1.50 22 220 89 (38.86) 0.764 (0.1066)
3.00 23 226 129 (57.08) 0.704 (0.1238)
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Ethylene glycol - EG(pagel78).csv

Bivariate HGLM

o v = (y1jj, y2ij)" : bivariate responses from j-th mouse, born from i-th dam

@ v; = (wj, u;)" : unobserved random effects for the i-th dam

@ It is assumed that y1;; and y»; are conditionally independent given v;.

Weight
N

Drug

Malformation
V2

—CO

Figure: Path diagram for the MDHGLM fitted to the EG data
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Ethylene glycol - EG(pagel78).csv

@ Hence, the following bivariate HGLM is proposed

yuiilwi ~ N(uj, @)

where Mij = Xlijﬁl =+ wi,

yoii|ui ~ Bernoulli(pj)

where log <lf"’,'),) = xjjf2 + uj, and

ij
o? pPO102
VINN(Oyz( 1 5 >>
PO102 gy

@ We consider three models

M1 Independent random-effects model where p = 0
M2 Random-effects model with a saturated variance-covariance matrix

M3 Shared random-effects models where u; = dw; for some constant ¢
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ex. EG - independent model (M1)

MDHGLM MDHGLM
y1-dose +dose2 +(1]litter) y2 - dose + dose2 +(1litter)

m Model for Mean Model for Mean
Response Variable Response Variable
Setting Variable Selected Variable Selected
ltter = dose < lter : dose :
vl dose2 vl dose2
v v
id i
Random Effects Random Effects
ltter litter
Distribution Distribution
gaussian - binomial -
Link Function Link Function
identity - logit v
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Model summary (M1)

Model Description

ex. EG - independent model (M1)

Model Description

Model Link Dist Rand Model Link  Dist
Mean  yl-dose+dose2+(1fiter) identity ~gaussian gaussian Mean  y2-dose+dose2 +(1llitter) logit binomial
Phi phi~1 log gaussian  NA Phi phi~1 log  gaussian
Lambda  lambda~1 log gaussian  NA Lambda  lambda ~1 log  gaussian
Estimate from Mean Model Estimate from Mean Model
Estimate  Std.Eror  tvalie  p.val w u Estimate  Std.Eror  tvalue  pval
(ntercept) 097808 001555 6289988 000000 094760 100856 (ntercept) ~ -583080 072429 -805032 000000
dose ‘016383 002719 -602582 000000 -021711 -011054 dose 499242 092278 541022 000000
dose2 002475 000847 292167 000348 000815 004135 dose2 097511 023938 -407346 000005
Estimate for log(Lambda) Estimate for log(Lambda)
Estimate  Estimate(Exp)  Std.Emor  tvalue Estimate  Estimate(Exp) ~ Std.Error  twalue
litter 498174 000686 015532  -3207364 litter 035677 142671 024012 148585
Estimate from Dispersion Model Likelihood
Estimate  Estimate(Exp) ~ Std. Error tvalue ML “2RL CAIC  Scaled Deviance
(intercept)  -5.18841 000558 004608  -112.60758 71947338 72413384 689.55801 60688179
Likelihood
ML -2RL CAIC  Scaled Deviance dr
217397468 -2150.60747 233044922 94209806 942.09806

Rand
gaussian
NA
NA
w uL
725042 -441118
318378 680107
144430 -0.50592
df
98666086
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ex. EG - correlated model (M2)

Model summary for (M2)

Model Description Model Description

Model Link Dist. Rand Model Link  Dist Rand
Mean  y1-dose+dose2+(1liter) identity —gaussian gaussian Mean  y2-dose+dose2 +(1llitter) logit binomial gaussian
Phi phi~1 log gaussian N, Phi phi~1 log gaussian  NA
Lambda  lambda ~ 1 log gaussian Lambda  lambda ~1 log  gaussian N,
Estimate from Mean Model Estimate from Mean Model
Estimate  Std. Error t-value pval L uL Estimate  Std.Error t-value p_val |18 uL
(ntercept) 097800 001410 6936273 000000 095036 100564 (intercept)  -585700 077059 -7.60063 000000 -7.36736 -434664
dose -0.16300 0.02537 642366  0.00000 021273 0.11326 dose 474202 0.94058 504161  0.00000 289849 658556
dose2 0.02500 0.00794 314776 000165 000943 0.04057 dose2 -0.88501 023378 -378563 000015 -134322 -0.42680
Estimate for log(Lambda) Estimate for log(Lambda)
Estimate  Estimate(Exp)  Std.Error t-value Estimate  Estimate(Exp)  Std. Error t-value
litter 495674 0.00704 021902 2263124 litter 061297 184591 033902 180810
Estimate from Dispersion Model Likelihood
Estimate  Estimate(Exp)  Std. Error t-value -2ML -2RL. CAIC  Scaled Deviance df
(Intercept) ~ -5.19041 000557 004600  -112.84692 719.47338 72413384  689.55801 60688179  986.66086
Likelihood
-2ML -2RL CAIC  Scaled Deviance df
217397468 215060747 -2330.44922 94209806  942.09806

363 /569



ex. EG - correlated model (M2

Residuals vs Fitted

|Residuals| vs Fitted

Residuals vs Fitted

|Residuals| vs Fitted

Studentized Residual

52
g, i, i
5 s s
* o 2 o
ERCC R R [ T ¥ H T z ; T
Scaled Fited Values Scaled Fitea Values Scaled Fited Values Scaled Fited Values
Normal Probability Plot Histogram of Studentized Residual Normal Probability Plot Histogram of Studentized Residual
g 3
2 &, T
H H H
g H . g
* g° — S
50 o

Standardized Residual

Theoretical Quantiles

Studentized Residual

1
Theoretical Quantes

Studentized Residual
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ex. EG - shared model (M3)

MDHGLM Shared MDHGLM Shared
y1~dose +dose2 +(1litter) 2 - dose +dose2 +(1/litter)

m Model for Mean Model for Mean
Response Variable Response Variable
Setting Variable Selected Variable Selected
ltter = dose < lter : dose :
vl dose2 vl dose2
v v
id i
Random Effects Random Effects
ltter litter
Distribution Distribution
gaussian - binomial -
Link Function Link Function
identity - logit v
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ex. EG - shared model (M3)

Model summary for M3

Beta Coefficient
Estimate  Std.Error
1 0.97953 0.14734
2 -0.17697 0.25731
3 0.02872 0.08020
4 596157 1.64273
5 481693 2.64087

6 088642 0.79425

Phi Coefficient
Estimate  Std.Error
1 -393279 0.06326

2 0.00000 0.00000

t_value
6.64809
-0.68777
0.35813
-3.62907
1.82399

-1.11605

pvalue
0.00000
0.49160
0.72025
0.00028
0.06815

0.26440

Lambda Coefficient
Estimate  Std. Error

1 -3.83570 0.21428

Shared Parameter
Estimate  Std.Error
1 1.00000 0.00000

2 -10.32757 0.79410

Likelihood
cAIC

1 -1600.13538
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ex. Rheumatoid arthritis - ra(pagel80).csv

The Rheumatoid Arthritis Patients rePort Onset Re-activation sTudy (RAPPORT
study) : longitudinal study that aims to identify an increase in disease activity by
self-reported questionnaires.

Self-reported questionnaires are provided for patients every 3 months together with
clinical evaluations of patients’ disease status.

HAQ and RADAI were used for patients to self-report their functional status.

A clinical examination was recorded using the DAS28, which is a composite score
that includes for example the swollen joints counts. The DAS28 score varies between
0 and 10.

There are 159 patients and 5 visits for each patients.

Not all patients gave information for each k-th response and not all patients were
measured at each of the 5 visits.

HAQ : Health assessment questionnaires (20 questions from 8 categories)
RADAI : Rheumatoid arthritis disease activity index (5 items)

DASZ28 : Disease activity score with 28 joint counts
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. Rheumatoid arthritis - ra(pagel80).csv

yl : DAS28

y2 : 1(HAQ > 0.5), 0(HAQ < 0.5)

y3 : 1(RADAI > 2.2), 0(RADAI < 2.2)
time : month of measurement (0,3,6,9,12)
age : age at the baseline

sex : 1(female), O(male)

subject : 159 patients
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ex. Rheumatoid arthritis - ra(pagel80).csv

Multivariate model with 3 responses

o yij = (1, y2ij, y3i)" : response from j-th visits of the j-th (patients i =1,2,...,159
and j=1,2,...,5)

o X : designed matrix for k-th response

@ As covariates we use the intercept, time, age, and sex.

Figure: Path diagram for the MDHGLM fitted to the rheumatoid arthritis data
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ex. Rheumatoid arthritis - ra(pagel80).csv

@ We consider the following multivariate model with three responses.

yiij|viti, vizi ~ N(X181 + va1i + vaoi - time, ¢)
exp(X2;if2 + va1i)
1+ exp(X2jB2 + vo1i)

exp(Xz;83 + vs1i)
1+ exp(X3i83 + va1i)

Yaii|va1; ~ Bernoulli (

y3ij|va1i ~ Bernoulli <

@ The model for DAS28 includes a random intercept and slope, while HAQ and
RADAI have only random intercepts.

@ We assume a 4-dimensional latent structure :

* * *
Viii 0 A pl)‘11,12 /’2)‘11,21 p3)‘11,31
* * *
vizi | MVN 0 P1AD 11 A12 Parlo 01 P5ATD 31
Vaii 0 p2)‘§1,11 /’4)‘§1,12 A21 pﬁ)‘;l,31
V31i 0 P3N 11 PSAS1 1 PEAG A3l
where A7 ) = \/AjAu.
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ex. Rheumatoid Arthritis - correlated model

MDHGLM MDHGLM MDHGLM

Responsel  fsponse?  Response esponsc  osponse?  Resporsed sponsel  Responsc?  Resporsed
Modelfor Mean Modelfor Mean Madelfor Miesn
Y1 age s e + (1 subject)+ ime subct) 2 age s+ time + (lscbicet Y- sge s time < (st

Model for Mean _ Model for Mean _ Model for Mean
i ftime lubfect lime. ubjct time
Random Effects Random Effects Random Effects.
subject sudject. subject
v Distribution Distribution
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ex. Rheumatoid Arthritis - correlated model

Model summary for response 1

Model Description

Likelihood
Model Unk | Dist Rand ML -2RL GAIC  Scaled Deviance a
Mean  y1-age+sex+time+ (1lsubject) + (timelsubject)  identity  gaussian  gaussian, gaussian PR I —p—— p—p—
Phi phi- 1 log gaussion NA
Lambda  lambda - 1 log gaussian  NA
Estimate from Mean Model
Estimate  Std.Eor  tvale  pval w u

(ntercept) ~ 177341 041261 429799 000002  0.96469

258213
age 000825 000107 769557 000000 000615 001035
sex 085425 018910 451743 000001 048361 122489
time 010005 002194 -456036 000001 -0.14306 -005705

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error tvalue
subject 040256 066860 014512 277406
subject1 -4.87457 000764 014584 -33.42475

Estimate from Dispersion Model
Estimate  Estimate(Exp)  Std. Error tvalue

(Intercept) 072858 048259 006505 1119958

372 /569



ex. Rheumatoid Arthritis - correlated

Model summary for response 2 and 3

Model Description

Model
Mean  y2~age +sex+time + (1lsubject)
Phi phi~1
Lambda  lambda~ 1

Estimate from Mean Model

Link  Dist
logit  binomial
log  gaussian

log  gaussian

Estimate  Std. Error t-value p_val
(Intercept)  -1.14821 059953 -1.91520  0.05547
age 001279 000917 139472 016310
sex 009165 027723 033060 074095
time 000898 001998 044962 065298
Estimate for log(Lambda)
Estimate  Estimate(Exp) ~ Std.Error  t-value
subject 045565 157720 018404 247576
Likelihood
-2ML -2RL. CAIC  Scaled Deviance
82749346 84428074 780.21214 63309696

Rand

gaussian

NA

NA

L

232329

000519

045172

003017

df

60144174

uL
002686
003077
063503

004814

Model Description

Model Link  Dist Rand
Mean  y3~age+sex+time+ (1subject) logit binomial  gaussian
Phi phi~1 log  gaussian NA
Lambda  lambda~1 log  gaussian NA

Estimate from Mean Model

Estimate  Std. Error t-value p_val L uL
(Intercept] ~ -0.82238 056103  -1.46583 014269 -1.92200 027724
age 000335 000855 039189 069514 -001340 002010
sex 045402 026410 171910 008560 -0.06362 097166
time -003820 001989 -1.92093 005474 -007719 000078
Estimate for log(Lambda)
Estimate  Estimate(Exp) ~ Std. Error tvalue
subject  -0.00756 099247 019027  -003974
Likelihood
-2ML -2RL. CAIC  Scaled Deviance df
849.53436  866.69250  824.57928 69441468 609.91703
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ex. Rheumatoid Arthritis - correlated model

Residuals vs Filed Residuals| vs Fitled

N AN
s

Residuals vs Filed Rosiduals| vs Fitled

Stucenized Resekat
FoRe—r—
[E—E—

-~
Scalea i Vaas ScaeaFied Vakas Scaled Fited Vakas
Normal Probabilty Plot Histogram of Studentized Residual

Froquency

Froa
Stanaarazes Rossh

Trecetca Ouantes Studentzed Resiual
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] e
H
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

o National merit twins data including extensive questionnaires from 839 adolescent
twins, who took the national merit scholarship qualifying test (NMSQT) in 1962
among the roughly 600,000 US high school juniors (Loehlin and Nichols, 1976).

o They were diagnosed as identical (509 pairs) or same-sex fraternal (330 pairs) by a
brief mail questionnaire.

o Later, they completed a 1082-item questionnaire covering a variety of behaviors,
attitudes, personality, life experiences, health, vocational preferences, etc., plus the
480-item California psychological inventory.

@ Twins' scores on the NMSQT and their five subscales are also included.

o The 285-item questionnaire filled out by the parent was mainly focused on the life

histories and experiences of the twins.
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

pairnum : 768 pairs

y1, y2, y3, y4 : NMSQT scores recorded within 0-100. English(y1), mathematics(yz),
social science(ys) and natural science(ya)

variables code definition

Gender X1 1(male), 2(female)

Mother's X2 1(<8th grade), 2(part high school),

educational level 3(high school grad), 4(part college),
5(college grad), 6(graduate degree)

Father's X3 1(<8th grade), 2(part high school),

educational level 3(high school grad), 4(part college),
5(college grad), 6(graduate degree)

Family xa  1(<$5000), 2($5000 to $7500)

income level 3($7500 to $10000), 4($10000 to $15000)
5($15000 to $20000), 6($20000 to $25000)
7(>$25000)

Zygosity x5 O(identical), 1(fraternal)
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

Covariates

English
1

Gender(x;)
Mother’s educatioanl level(x;)
Father’s educational level(x3)
Family income level(x,)
Zygosity(xs)

Mathematics
b (o

Social Science
y3

Natural Science
Ya

260

Figure: Path diagram for the MDHGLM fitted to the NMSQT for twins data
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

Multivariate HGLM

@ We consider a multivariate HGLM with 4 response variables for the j-th person of

the i-th twin. For k =1,2,3,4,
Yiij| Vi ~ N(XUB/((H) + Vii, Drij)

where random effects follow multivariate normal distribution

r 0 ALi p1ATi2i  P2Aiai
; 0 A3 1i A2i A3izi
Vo ~ MVN , pP1 i,l 2* PaA2; 3
Vv3i 0 P31 PaN3 i Asj
Vaj 0 P3Nkiti  PsAkigi PeALii

P3/\Ti,4i

P5 )\;i,4i

P6/\§i,4i
Asi

jf-’k,- = /Ajidk and A\ = exp(ﬁ,((é)) is the variance of random effects.

o To allow heterogeneity between type of zygosity, we consider the model for residual

variance
log ¢uy = Big + Bis xsi
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv

@ Random effects of social science and natural science scores show the strongest
correlation, 0.738. Correlation between English and mathematics scores has the
lowest value, 0.622.

@ For gender effect, mean have higher significant scores on mathematics, social science
and natural science, but women have higher significant scores on English.

@ Mother's educational level is not significant at almost all subject’s scores. But
father's educational level 4 and 6 are significant.

o Family's income level 5 has a significant positive effect and it has the highest
estimate.

@ In dispersion models for residual variances, we see that fraternal twins have greater
heterogeneity than identical twins.
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ex. National merit scholarship qualifying test - nmsqt(pagel184).csv
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Figure 7.4 Normal probability plots for (a) yilv1, (b) y2lve, (c) yslvs, and (d)
yalvs under the multivariate HGLM on the national merit scholarship qualify-
ing test for twins data

@ We see that the normal probability plots are approximately linear in the absence of
outliers. Thus, the fitted model is satisfactory.
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ex. NMSQT - Multivariate HGLM
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ex. NMSQT - Multivariate HGLM

MDHGLM MDHGLM
Number of Response Variables Correlation Structure Number of Response Variables Correlation Structure
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ex. NMSQT - Multivariate HGLM

MDHGLM
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ex. NMSQT - Multivariate HGLM

MDHGLM
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ex. NMSQT - Multivariate HGLM
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Vascular cognitive impairment - cog(pagel88).csv

o Lee, Nelder and Pawitan (2017) considered the Vascular Cognitive Impairment (VCI)
data.

@ The VCI measurements are increased among stroke patients, because cognitive
function is declined due to stroke. However, through an early intervention based on
the VCI, the cognitive function can be improved.

@ The purpose of the study is to examine the effects of 10 demographic and 10 acute

neuroimaging variables on the cognitive function in the ischemic stroke patients.

y1l, y2, y3, y4 : the standardized VCI scores. Executive(y1), memory(y2),
visuoapatial(ys), and language(ys)
id : 372 patients
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Vascular cognitive impairment - cog(pagel88).csv

Variable Code Definition
Demographic variables
Age X1 integer of age/10
Gender X2 1(male), O(female)
Edu X3 0O(none), 1(elementary), 2(middle), 3(high), 4(over college)
HTN X4 1(hypertension), 0(none)
DM X5 1(diabetes mellitus), O(none)
Af Xp 1(atrial fibrillation), O(none)
HxStroke X7 1(history of stroke), 0(none)
NIHSS Xxg national institute of health stroke scale score at admission
VCINP X9 time interval from stroke onset to first K-VCIHS-NP
PCl X10 1(IQCODE > 3.6), O(otherwise)
Neuroimaging variables
Acuteleft X11 Left or bilateral involement
AcuteMulti X12 lesion multiplicity in acute DWI imaging
AcuteCS X13 cortical involvement of acute lesions
ChrCS X14 cortical involement of chronic territorial infarction
PVWM X15 Periventricular white matter lesions (PVWM). 0(PVWM 0,1), 1(PVWM 2,3)
SCWM X16 Subcortical white matter lesions (SCWM). 0(SCWM 0,1), 1(SCWM 2,3)
LAC X17 The presence of lacunes
CMB X18 The presence of cerebral microbleeds
Medial temporal lobe atrophy (MTA)
MTAL x1g 1(MTA 2), 0(not 2)
MTA2 Xx20 1(MTA 3,4), O(not 3,4)
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Vascular cognitive impairment - cog(pagel88).csv

Demographic variables

Age(x,), Gender(x,), Edu(x3), HTN(x4),
DM(xs), Af (xg), HxStroke(x7), NIHSS(xg),
VCINP(xs), PCI(x 1)

Neuroimaging variables

IAcuteLeft(x;,), AcuteMulti(x, ), AcuteCS(x;3),
(ChrCS(x14),PVWM(x15), SCWM(x1¢), LAC(x17),
CMB(x15),MTA1(x15), MTA2(x2)

Language Domain
Vs

Figure: Path diagram for the MDHGLM fitted to the VCI data
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Vascular cognitive impairment - cog(pagel88).csv

Multivariate HGLM

@ Consider a multivariate HGLM for four response variables for the t-th visit of the
i-th patient. For k =1,2,3,4,

Vit | Vii ~ N(Xit/B/((H) + Vii, Drit)

where Xj: are covariates, ¢uir = exp(,B,(:g)) is the residual variance.

@ The random effects follow a multivariate normal distribution :

* * *
Vi 0 Ai P12 P2ALisi P34
Voi 0 S s Moi A5 o 5
2i ~ MVN P1 il,ll i’ P4 2i,3i P5 i1,4l ,
v3i 0 p2)‘3i,1i 04)\3.',2; Azi P6/\3i,4i
* * *
Vai 0 P3Xai1i PsALioi PeAi i Asj

where Afhki = /Ajidk and A = exp(ﬁ,((é)) is the variance of random effects.
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Vascular cognitive impairment - cog(pagel88).csv
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Figure 7.6 Normal probability plots for (a) yilv1, (b) yz|vz, () ys|vs, and ()
alva under the multivariate HGLM on the vascular cognitive impairment data.

o We see many large outliers.
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Vascular cognitive impairment - cog(pagel88).csv

MDHGLM1

@ We consider a multivariate DHGLM (called MDHGLM1) that allows a heavy-tailed
distribution for yxie|vii (k =1,2,3,4) as follows. For k =1,2,3,4,

log grir = Bko +Vk: )

where V,S25 ~ N(0, o) and Ay = exp(,BkO))
MDHGLM2

@ We further consider a MDHGLM (called MDHGLM?2) also allowing heavy-tailed
distribution for vy; as follows. For k = 1,2, 3,4,

log duie = (¢) + VIE¢)

()+Vﬁ,)7

log Axi

where V;S ~ N(0, ak) and vk ~ N(0, 7%).
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Vascular cognitive impairment - cog(pagel88).csv
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Vascular cognitive

impairment - cog(pagel88).csv
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Figure 7.9 Normal probability plots for (a) v1, (b) vz, (c) vs, and (d) vs under Figure7.10 Normal probability plots for (a) vy, (b) vz, (¢) vs, and (d) vs under
the MDHGLM!1 on the vascular coanitive impairment data. the MDHGLM2 on the vascular cognitive impairment data.
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Vascular cognitive impairment - cog(pagel88).csv

@ cAIC selects MDHGLM2 (cAIC=10437.4) as the best-fitting model among 3
models, because cAlC for the multivariate HGLM (cAlC=13260.0) and MDHGLM1
(cAlC=10548.1) are larger.

@ Wee see that most outliers in the multivariate HGLMs disappear by using
MDHGLM1 or MDHGLM2.

@ From the normal probability plots for v,ﬁ?), MDHGLM?2 is prefered to the
MDHGLM1 because \“/,E,.A) leans more toward the line.

@ Thus, we select the MDHGLM2 as the final model, which gives robust estimators
against outliers as well as robustness against misspecification of distributional

assumptions on random effects.
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ex. VCl - MDHGLM2

Responsel  Resp

Modelfor Mean

VL1213 4845 X6 1T 158

X174 X184 X19- 20 + (1]

Model for Phi

phi~ 1+ (1]

Model for Lambda

lembda-1+(1/id

X3 x4 x5 X6

Model for Mean
Response Variable

vt

Varisble

Random Effects

i

Distribution

goussian

Link Function

ity

Selected
w

Responsel R

Modelfor Mean

VXL X2 13440445 X6 1T B D
X174 1841920 + (1]

Maodel for Phi

phi~ 1+ (1)

Model for Lambda

lambda-1+(1lid
@ use

X3 X141 15 X6

Model for phi

Response Variable

i -

Varisble Selected

Random Effects

i

Response.

Modelfor Mean

VLKL X2 X3 404X X6 1T B D
X174 X184 X19- 20 + (1]

Model for Phi

phi~ 1+ (1)

Modelfor Lambda

:

1213 14 1 15 1 x16

Model for Lambda
Response Variable

b

Varisble Selected

Random Effects

i

395 /569



ex. VCl - MDHGLM2
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ex. VCl - MDHGLM2
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ex. VCl - MDHGLM2
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ex. VCl - MDHGLM2

Model summary for response

Estimate from Mean Model

Estimate  Std.Eror  t-value
(intercept)  -084734 034885  -2.42896
x1 000180 004814 003735
x2 023332 013221 -176483
x3 004575 001146 399107
xa 013788 012329 -111837
x5 009325 011288  -082612
x6 001870 015930 01739
x7 025660 014105 -181921
x8 007099 001094  -6.48708
x9 003639 001577 230698
x10 112607 012556 -8.96828
x11 010470 010782 097106
x12 014649 012607 -116199
x13 012275 012707 096600
x14 005236 016359  -0.32005
x15 000811 012581 006444
x16 030459 014625 208272
x17 023365 012167 -192040
x18 008790 012154 072323
x19 012867 014413 089277
x20 069691 017888  -389604

p.val
001514
097021
007759
000007
026341
040874
090655
006888
000000
002106
000000
033152
024524
033404
074893
094862
003728
005481
046954
037198

000010

w

153109

009255

-0.49245

002328

037953

-0.31449

029354

053307

009244

006730

137217

-0.31604

-0.39358

037179

037299

-0.23848

059124

047212

-0.32613

041117

104751

uL

016360

009615

002580

006821

010376

012799

033094

001986

004954

000547

087997

010663

0.10060

012630

026828

025469

001795

000482

015032

015382

034631

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
(Intercept)  -0.03313 0.96741 007738  -0.42816
Estimate for log(Tau)
Estimate  Estimate(Exp)  Std. Error t-value
id  -1.46560 023094 081713 -1.79359
Estimate from Dispersion Model
Estimate  Estimate(Exp)  Std.Error t-value
(Intercept)  -0.89961 040673 004524  -19.88364
Estimate for log(Alpha)
Estimate  Estimate(Exp) ~ Std.Error  t-value
id  -1.03163 0.35642 020485  -5.03598
Likelihood
-2ML -2RL CAIC  Scaled Deviance df
2877.86800  2944.27924  2536.29379 824.24734  847.30119
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ex. VCl - MDHGLM2

Model summary for response

Estimate from Mean Model

Estimate  Std.Eror  t-value
(intercept)  -074140 029270 -253300
x1 012160 004105 296194
x2 088133 010958  -804281
x3 001015 000944 107520
xa 010375 010340 -100337
x5 008855 009255 -095678
x6 033291 012989 256300
x7 026469 011442 231336
x8 003091 000891 -346701
x9 001335 001408 094863
x10 067647 010175 664835
x11 028744 008990 -319733
x12 000588 010403  -005653
x13 005552 010525 052753
x14 024250 013351 181630
x15 012283 010322 -119002
x16 007502 011865 063232
x17 008472 009945 085187
x18 016821 009955  -168965
x19 016975 011726  -144759
x20 047041 013959 -336986

p.val
001131
000306
000000
028229
031568
033868
001038
002070
000053
034281
000000
000139
095492
059783
006932
023404
052718
039429
009109
014773

000075

w

-1.31509
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-109611

002865

-0.30641

026994
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-0.48895

004838
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-0.20978
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032514

015752

027963

-0.36333

-0.39959

-0.74401

uL
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066655

000835

009891

009285

007832

004043

001343

004095

047704

011124

019802

026180

050419

007948

030757

011020

002691

006009

019681

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
(Intercept) ~ -0.54827 057795 007327  -7.48327
Estimate for log(Tau)
Estimate  Estimate(Exp)  Std. Error t-value
id 140220 024605 078543 178526
Estimate from Dispersion Model
Estimate  Estimate(Exp)  Std.Error t-value
(Intercept)  -0.94410 0.38903 004499 -20.98458
Estimate for log(Alpha)
Estimate  Estimate(Exp) ~ Std.Error  t-value
id o -1.11622 0.32752 018996  -5.87597
Likelihood
-2ML -2RL CAIC  Scaled Deviance df
267770247 2752.29451 241582892 82809852 86518428
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ex. VCl - MDHGLM2

Model summary for response

Estimate from Mean Model

Estimate  Std.Eror  t-value
(intercept)  -122399 053658  -228111
x1 011626 007424 156608
x2 068201 019730  -3.45673
x3 000215 001708  -0.12609
x4 032298 018413  -175405
x5 015629 016911 092420
x6 004929 023829 020684
x7 033097 021139 -156565
x8 008391 001681 -4.99306
x9 001707 002491 -0.68547
x10 109688 018971 -5.78201
x11 061785 016177 381932
x12 005076 018719 027115
x13 010884 018992 -057310
x14 038764 024366 159088
x15 021095 018605 113385
x16 022365 021862 -102302
x17 043582 018141 -240234
x18 009647 018208 052984
x19 014781 021320 069329
x20 091361 027198 -335915

p.val

002254

011733

000055

089966

007942

083613

011743

000000

049305

000000

000013

078628

056658

011164

025686

030630

001629

059622

048813

000078

w

227568

002924

106872

003563

068389

-0.48774

051633

-0.74530

-0.11685

006590

146871

030078

031614

-0.48108

008994

-0.15370

065213

079139

-0.26040

056567

-1.44668

uL
017230
026177
029531
003132
003792
017516
041775
008336
005097
003175
072506
093492
041765
026339
086522
057560
020484
008025
045334
027006

038054

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std. Error t-value
(Intercept) 0.62287 186428 007591 820552
Estimate for log(Tau)
Estimate  Estimate(Exp)  Std. Error t-value
0 117852 030773 029151 -404281
Estimate from Dispersion Model
Estimate  Estimate(Exp)  Std. Error t-value
(Intercept) 0.20479 122726 004533 451753
Estimate for log(Alpha)
Estimate  Estimate(Exp) ~ Std.Error  t-value
id 094858 0.38729 205560 046146
Likelihood
-2ML -2RL CAIC  Scaled Deviance df
405080959  4100.10526 380326738 87084569 86315625
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ex. VCl - MDHGLM2

Model summary for response

Estimate from Mean Model

Estimate  Std.Eror  t-value
(intercept)  -002046 033705  -0.06069
x1 000385 004660 008268
x2 044962 012887  -3.48903
x3 001862 001115 166929
xa 039622 012125 326786
x5 009625 011060 -087022
x6 025281 015427 163874
x7 012455 013884 089709
x8 004316 001079 -400179
x9 001748 001496 116831
x10 100397 012301 -8.16178
x11 009404 010582  -088865
x12 010641 012317 086393
x13 021594 012444 173527
x14 014010 016222 086363
x15 026070 012243 212945
x16 002941 014206 020703
x17 024431 011938 204646
x18 015915 011935 133347
x19 028894 013953 207084
x20 066063 017499 377536

4

p.val
095161
093410
000048
009506
000108
038418
010127
036967
000006
024268
000000
037419
038763
008269
038779
003322
083599
004071
018238
003837

000016

w

-0.68108

008749

-0.70220

000324

-0.63387

-0.31304

004956

014757

-0,06430

001184

-1.24507

-0.30144

-0.34783

002797

-0.45804

-0.50066

-0.24503

047829

007478

056241

-1,00360

uL

064017

009519

019704

004048

015858

012053

039668

002202

004680

076288

011337

013501

045985

017785

002075

030785

001032

039309

001546

031766

Estimate for log(Lambda)

Estimate  Estimate(Exp)  Std.Error t-value
(Intercept)  -001139 0.98867 007462 -0.15266
Estimate for log(Tau)
Estimate  Estimate(Exp)  Std. Error t-value
id  -126170 028317 061920  -2.03762
Estimate from Dispersion Model
Estimate  Estimate(Exp)  Std.Error t-value
(Intercept)  -1.10049 033271 004452 -24.72022
Estimate for log(Alpha)
Estimate  Estimate(Exp) ~ Std.Error  t-value
id  -1.09516 0.33448 022641 -483717
Likelihood
-2ML -2RL CAIC  Scaled Deviance df
270155439 2768.95250  2310.95625 85105156  838.75377
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ex. VCl - MDHGLM2
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

o Longitudinal data set from mother’s stress and children’s morbidity study (MSCM)
(Asar and llk, 2014).

@ In this MSCM study, 167 mothers and their preschool children were enrolled for 28
days.

@ Investigation of the serial dependence structures of the 2 longitudinal responses
suggested a weak correlation structure for the period of days 1~16. Therefore, only
the period of days 17 ~ 28 is considered in this dataset.

@ 167 x 12 = 2004 observations are in dataset.
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

stress = y1 : mother’s stress. 1(presence), O(absence)

iliness = y> : children’s illness. 1(presence), 0(absence)

married : marriage status. 1(married), O(other)

education : highest education level. 1(> high school), 0(< high school)
employed : employment status. 1(employed), 0(unemployed)

race : race. 1(non-white), O(white)

csex : gender of children. 1(female), O(male)

chlth : health statuses of children at baseline. 3(very good), 2(good), 1(fair),
0(poor/very poor)

mhlth : health statuses of mothers at baseline. 3(very good), 2(good), 1(fair),
0(poor/very poor)

housize : household size. 1(more than 3 people), 0(2-3 people)
bstress : rhe average stress values of the 1~16 days
billness : rhe average illness values of the 1~16 days

week : study time. week = (day-22)/7
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

married
education Mother's stress
employed status (stress)
race V1
csex
chith
mhith

housize Childern’sillness
bstress Status (illness)
billness Y2

week

Figure: Path diagram for the MDHGLM fitted to the mother's stress and children’'s morbidity data
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

Bivariate Bernoulli HGLM

¥i = (v1i5, y2i7)T : bivariate binary responses for the j-th visit of the i-th family
v,(“) = (w,(“), u}"))T : unobserved random effects for the i-th family
y1,-j|v,.(”) ~ Bernoulli(p1j), y2,-j|v,(“) ~ Bernoulli(p2j)

P1jj (1) (k) P2ij _ (k) (1)
lo — | = X5, + w;m, lo — ) = X;5" + u;
g<1—p1,'j) vt g(l—ng) 2

A1i PV ALiA2i
p VAL Aai

Thus, given v,(”), y1ij and y»;; are independent.

i

where v\*) ~ N(0, ;) with &; = ( ) and —1<p<1.

We first consider three models with log A1; = [3%) and log \2j = éé‘).

M1 Independent model, having p =0
M2 Random-effect model with a saturated variance-covariance matrix
M3 Shared random-effects model, having ult = 6w,-(“) for some constant §

i
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Mother's stress and children’s morbidity - motherStress(pagel95).csv

@ The cAIC has values of 2653.7 (M1), 2428.9 (M2), and 2517.3 (M3).

@ Thus, cAlC selects the full model M2 among 3 models.

Robust bivariate DHGLM
@ In binary data, GLMMs are sensitive to a distributional assumption of random
effects, which is difficult to identify.
@ Thus, we consider the robust bivariate DHGLM by allowing random effects in the

variance for random effects.

M4 the same as M2, but having log A\1; = 5&3) + W,.(’\) and log \2; = ﬂ%) + uf’\)
where w,.()‘) ~ N(0, 71) and qu) ~ N(0, 7).

@ The cAIC has value of 2103.9 for M4. Thus, cAlC selects M4 as the best-fitting

model.
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ex. MSCM - rob

ust bivariate DHGLM (M4)

MDHGLM

Number of Response Variables

Response2

Response1

Model for Mean

stress ~ married + education +
+ bllness + week + (1fid)

Model for Lambda

lambda~1+(1]id)

Correlation structure

employed + race + csex + chith * mhith + housize + bstress

Model for Mean
Response Variable
id married
stress education
ilness employed
race
chith
mhith
housize
batress
billness.
ek
Random Effects
id
Distribution
binomial -
Link Function
logit -

MDHGLM
Number of Response Variables Correlation Structure
8 correlated -

Responsel  Response?

Model for Mean

stress ~ married + education + employed + race + csex + chith + mhith + housize + bstress

+billness +week +(1lid)
Model for Lambda

lambda~1+(1id)

4

Model for Lambda
Response Variable

lambda
¥ Use Variable
id -

Selected

stress
illness
married
education

Random Effects

id
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ex. MSCM - robust bivariate DHGLM (M4)

MDHGLM MDHGLM

Number of Response Variables Correlation Structure

Number of Response Variables Correlation Structure

Responsel  Response2
Responsel  Response2
Model for Mean
= Model for Mean
+billness +week + (1fid) 7 illness ~ married + education + employed + race + csex + chith + mhith + housize + bstress .

Model for Lambda + billness + week + (1]id) .

lambda-1+( Model for Lambda

lambda~1+(1id)

[EET. .
Model for Mean
Response Variable
e . Model for Lambda
Response Variable
Varisble Selected Lambda f— .
i = married S
stress education
ilness employed @ Use Variable Selected
race
ia 5
e tress
chith 3t
mhith illness
Ihousize married
e education
billness. employed
weck race
csex
chith
mhith
housize
Random Effects bstress
" billness
week
Distribution
Random Effects
inomial -
id
Link Function
logit -
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ex. MSCM - robust bivariate DHGLM (M4)

Model summary for response 1

Estimate from Mean Model Estimate for log(Lambda)
Estimate  Std.Error  t-value p_val 1 uL Estimate  Estimate(Exp) ~ Std.Error  t-value
(Intercept) ~ -2.23657 047641  -4.69463 000000 -3.17033 -1.30281 (Intercept) ~ 0.13682 114662 0.33587 040737
married -0.00807 024321 -003318 097353  -0.48476 0.46862

education 0.37034 0.24750 149632 013457 -0.11476 0.85543 Estimate for log(Tau)

employed 067750 027259 248542 001294 121177 -014322 Estimate | Estimate(Ep) | StdEmor | tvalue
race 001288 027053 004760 096203 -051735 os4311 4 018182 087693 | 007680 | -171008
csex 002662 023363 011395 090928 -048454 043130

Likelihood
chith 025297 015872 -159379 011098 056407 005813

-2ML -2RL CAIC  Scaled Deviance df

mhith 018626 015900 -117145 024142 -049791 012538

121267691 122701246 1197.92487 108517549 1947.62331
housize 005301 027607 019202 084773 -048808 059410
bstress 401033 0.80331 499223  0.00000 243583 5.58482
billness 079116 075787 104392 029652 -0.69427 227659
week 045640 016312 279790 000514 -077612 -0.13668

411/569



ex. MSCM - robust bivariate DHGLM (M4)

Model summary for response 2

Estimate from Mean Model Estimate for log(Lambda)
Estimate  Std.Error  t-value p_val 1 uL Estimate  Estimate(Exp) ~ Std.Error  t-value
(Intercept)  -1.79568 050636  -3.54622 000039 -2.78815 -0.80320 (Intercept) ~ 0.59155 1.80678 027353 216260
married 0.51276 0.28711 178594 007411  -0.04997 1.07549

education -0.05051 030106 -0.16776  0.86677  -0.64059 0.53958 Estimate for log(Tau)

employed 020870 033111 063031 052849 085768 044027 Estimate | Estimate{Exp) | Std.Emor | t-value
race 010295 025631 040167 068793 -039942 0s0s32 4 023604 078975 | 008629 | -273527
csex 005306 027693 019161 084805 -048973 059585 .

Likelihood
chith 043616 017754 245665 001402 078413 -008818

-2ML -2RL CAIC  Scaled Deviance df

mhith 003598 017028 021130 083265 -029778 036974

118171817 119528416 115212096 103184794 194386149
housize  -060276 027637 218102 002918 -114443 -006108
bstress 0.07724 1.03150 0.07488  0.94031 -1.94451 209898
billness 226972 089441 253763 001116 051668 402276
week 020735 020528 -101008 031246 -0.60971 019500
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ex. Primary biliary cirrhosis - pbc(page206).csv

o Longitudinal data set in the R package JM (Komarek, 2015) from a Mayo Clinic trial
on 312 patients with primary biliary cirrhosis (PBC) conducted in 1974-1984.

@ There are 1 to 5 visets per subject performed at time of months. At each visit,
measurements of 3 response variables are observed.

o Komarek (2015) used 260 subjects known to be alive at 910 days of follow-up, and
only the longitudinal measurements by this point will be considered.
subject : 260 subjects
day : time of day = monthx30.4375
month = x : time of month
Ibili = y1 : continuous logarithmic bilirubin
platelet = y» : discrete platelet count

spiders = y3 : dichotomous indication of blood bessel malformations
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ex. Primary biliary cirrhosis - pbc(page206).csv

Log of bilirubin /@«
L §
Month Platelet
b -«
Spiders
2
S8l

Figure: Path diagram for the MDHGLM fitted to the PBC data
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ex. Primary biliary cirrhosis - pbc(page206).csv

Multivariate model for 3 responses

@ We consider a multivariate model for three response variables with a covariate x;: for
the tth visit of the ith patient.

yiie|vii ~ N(Nlity ®1i)

with g = B + 8% + v and log g1 = B + B9 x;
Yoit|voi ~ N(M2it7 ®2i)

with g = B + B8 xie + Vi) and log ¢oi = B3 + B xie
yit|vai ~ Bernoulli(pg,-t)

with Iog<1 p32 ) ) 4 B i + Vi)
- P3it

where the random effects follow multivariate normal distribution :

Vﬁt) 0 A1 PIAT L P2A[ 5
AL ~MYN [ (o], [erss X psrss with AT = /A
Vg#) 0 P2A1 P35 A3
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ex. Primary biliary cirrhosis - pbc(page206).csv

Residuals vs. Fitted Residuals vs. Fitted

Residuals vs. Fitted Residuals vs. Fitted

i i i § o :
& & é g . .
g ] H i
H H i° H
e ] iq LI
8 o 8 & 1 & -
1. . T °
G0 12 s 0 20 %0 40 0 0 w0 w0 w0 s
Rp— Rr— r— r—
Normal Probability Plot Histogram of Student Residual Normal Probability Plot Histogram of Student Residual
s 5 B
- > o © o
i o i SIS
8 .| H 3 1 § g
£ H £ - £
LR g 84
3 2 & v &
T oo 74 o4
< o1z s w20z 4 6 o1z s w20 2 4 68

Theoretical Quantiies Student Residual

Figure 7.13 Model checking plots for multivariate HGLM of yy on the primary
biliary cirrhosis data.

Theoretical Quanties Student Residual

Figure 7.14 Model checking plots for multivariate DHGLM of ya on the pri-
mary biliary cirrhosis data.

@ Under the multivariate HGLM, we see that many large outliers exist.
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ex. Primary biliary cirrhosis - pbc(page206).csv

Multivariate DHGLM allowing heavy-tailed distributions for y; and y»

log 1 = 8L + B + vi?) with v{?) ~ N(0, 1)
log ¢ = B + B xie + Vi) with vi?) ~ N(0, a)

@ cAIC shows that DHGLM (cAlC=13068.1) is better fit than HGLM (cAlIC=19776.5).

@ We can see that most outliers in multivariate HGLM disappear allowing heavy-tailed
distribution for y; and y».

@ Thus, we select DHGLM which gives robust estimators against outliers.
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»

Responsel R

Model for Mean

Response3

Ihili ~ month + (1 subject)

Model for Phi

phi~ month + (1subject)

Lambda

Model for Mean
Response Variable

bl

Variable
subject
day

Ibili
platelet
spiders

Random Effects
subject

Distribution
gaussian

Link Function

identity

Selected
month

Responsel ~ Response2  Response3

Model for Mean

Ibili ~ month + (1]subject)

Model for Phi

N

phi = month + (1]subject)

Mean

@ Use

‘ Lambda

E

ing

Model for phi
Response Variable

phi -

Variable Selected
subject month
day

Ibili

platelet

spiders

Random Effects

subject
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»

Responsel  Response2  Response3 Responsel  Response2  Responsed

Model for Mean Model for Mean

platelet ~month +(1/subject) platelet ~month +(1lsubject]

Model for Phi Model for Phi

phi~ month + (1lsubject) phi ~ month + (1]subject)

Model for Mean _ Model for phi
Response Variable Response Variable
platelet - @ Use phi -
Variable Selected Variable Selected
day day
Ibili Ibili
platelet platelet
'spiders spiders
Random Effects Random Effects
subject. subject
Distribution
gaussian -
Link Function
identity -
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»

Responsel  Response?  Response3

Model for Mean

spiders ~month + (1|month)

Model for Phi

phi ~ month

Model for Mean
Response Variable

spiders
Variable Selected
subject month
day
Ibili

platelet
spiders

Random Effects

subject

Distribution

binomial

Link Function

logit

Response1

Model for Mean

Response3

spiders ~ month + (1jmonth)

Model for Phi

phi~ month

“ Use

Model for phi
Response Variable

phi

Variable Selected
subject month
day

Ibili

platelet
spiders
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»

Model summary for response 1

Model Description

Model

Mean  Ibili~month + (1]subject)
Phi phi ~month + (1month)
Lambda  lambda ~ 1

Estimate from Mean Model

Estimate  Std. Error
(Intercept) 031711 0.05100
month 0.00592 0.00189

Estimate for log(Lambda)

Estimate  Estimate(Exp)

subject  -0.38040 0.68359

Link

identity

log

log

t-value
621787

312755

std. Error

0.09372

Dist
gaussian
gaussian

gaussian

p_val
0.00000

000176

t-value

-405890

Rand
gaussian
gaussian

NA

18
021715

0.00221

uL
041706

0.00963

Estimate from Dispersion Model

Estimate  Estimate(Exp)

(Intercept)  -2.69969 0.06723

month 0.03065 103113

Estimate for log(Alpha)
Estimate  Estimate(Exp)

month  -1.25510 0.28505

Likelihood
-2ML -2RL cAIC
1269.97161

1284.91768  860.51852

Std. Error

0.22169

Std. Error
0.12324

0.00746

t-value

5.66158

Scaled Deviance

642.96647

t-value
21.90588

4.11076

df

67230014
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»

Model summary for response 2

Model Description

Model
Mean  platelet ~ month + (1lsubject)
Phi phi ~ month + (1/subject)

Lambda  lambda ~ 1

Estimate from Mean Model
Estimate  Std. Error
(Intercept) 26370476 492584

month -1.13960 0.18351

Estimate for log(Lambda)
Estimate  Estimate(Exp)

subject  8.63149 560542983

Link
identity
log

log

t-value
5353501

-6.21000

std. Error

0.09512

Dist.
gaussian
gaussian

gaussian

p_val
0.00000

0.00000

t-value

90.74010

Rand
gaussian
gaussian

NA

18
25405012

-1.49928

uL

27335941

-0.77992

Estimate from Dispersion Model
Estimate  Estimate(Exp) ~ Std.Error t-value
(Intercept)  7.27767 1447.60463 006725 10821454

month 001141 101147 0.00438 2.60486

Estimate for log(Alpha)

Estimate  Estimate(Exp) ~ Std.Error t-value
subject  -1.02571 035854 022865 -448592
Likelihood
-2ML -2RL CAIC  Scaled Deviance df
981100469  9807.64439  9467.28606 66120777 67896712

422 /569



ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»

Model summary for response 3

Model Description Estimate from Dispersion Model

Model Link  Dist Rand Estimate  Estimate(Exp) ~ Std.Error  t-value
Mean  spiders~month + (1jmonth)  logit  binomial  gaussian (Intercept) ~ 0.11258 111916 007156 157330
Phi phi ~month log  gaussian NA month 000230 100230 000534 043040
Lambda  lambda ~ 1 log  gaussian NA
Likelihood
Estimate from Mean Model -2ML -2RL cAIC  Scaled Deviance df
Estimate  Std.Error  t-value p.val w uL 105698528 106646862  1065.35635 989.60868  864.12526

(Intercept) 1.12502 021516 -522871 000000 -1.54673 -0.70330

month 0.00786 001331 059075 055469 -001822  0.03395
Estimate for log(Lambda)

Estimate  Estimate(Exp) ~ Std.Error t-value

month  -1.26833 0.28130 0.23694  -5.35288
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y;and y»
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ex. Missing data mechanism - sch_2(page209).csv

Review : DHGLM with ignorable missingness

@ In Chapter 6, we analyzed the schizophrenic behavior data from an eye-tracking
experiment with a visual target moving back and forth along a horizontal line on a
screen (Rubin and Wu, 1997).

@ We assume that the missing data are missing at random (MAR).

@ We proposed using a DHGLM with

= BY + xuBH) + i B + 684 + schifY” + schi - x1BY)
+ schi - B8 + v + ¢

where v ~ N(0, \) is the subject random effect, and e; ~ N(0, ¢).

log(¢i) = B + schiB?) + schiv(®)

(#)

where v;*” ~ N(0, 7) are the dispersion random effects.

@ We call this model DI (DHGLM with ignorable missingness).

425 /569



ex. Missing data mechanism - sch_2(page209).csv

DN : DHGLM with non-ignorable missingness

@ According to the physicians, missingness could be caused by eye blinks which are
related to eye movements (responses) (Goossens and Opstal, 2000).

@ This leads to the following model for missing data.

@ 0j = y»j; : indicator variables. 1(missing), 0(otherwise)

n= ¢71(p,-j) = o + X1,'j(51 + X2,'j(52 + sex;03 + schijds + sex; - X1,'j(55
+ sex; - X2,'j56 -+ sex; - schi;jd7 + py,-}‘
where p;j = P(§; = 1).

@ We can consider the model DI as well as DN with the probit model having two

responses : y; for a continuous response and y» for a missing indicator.

DI DHGLM with ignorable missingness where p = 0
DN DHGLM with non-ignorable missingness where p # 0
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ex. Missing data mechanism - sch_2(page209).csv

@ The negative value of j supports the physicians’ opinions that lower values of the
response are more likely to be missing at each cycle.

@ However, the conclusions concerning non-ignorable missingness depend crucially on
untestable distributional assumptions. Thus, sensitivity analysis has been
recommended.

@ Fortunately, the analysis of the responses in there data indicates that they are not
sensitive to the assumptions about the heavy tails or the missing mechanism (Yun
and Lee, 2006).
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ex. Law school admission - factor(page215).csv

@ Lee, Nelder, and Pawitan (2017) considered law school admission data of Bock and
Lieberman (1970), consisting of 6 items for law school admission test with 350
subjects.

y1 ~ ys : items for law school admission test. 1(correct), O(not correct)

subject, x : 350 subjects

(%] [&] [&

‘ ¥z ‘ V3

Figure: Path diagram for the binary 2-factor model
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ex. Law school admission - factor(page215).csv

Binary 2-factor model
o mj = P(y; = 1|vi)

@ Consider a binary 2-factor model.
logit(m;) = By + Av;

where 7; = (71, -+ ,mis)" and By = (Bo1,- -, Pos)". Respectively,
ar_ (1 % X 0 0 0
0 0 0 1 X X

and Vi = (V,'l, V,'2)T ~ BVN (0, (711 712)).
Y21 Y22
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ex. Law school admission - factor(page215).csv

1-factor model

@ We also consider 1 factor model, which is equivalent to assume the correlation
between vi; and v»; being +1.

logit(m;) = By + Awy;
where
AN=(1 X X M X5 A)

and Wy ~ N(O,’yu).

o 1-factor model has cAIC = 2371.7 which is less than 2-factor model (cAIC =
2548.6). Thus, cAlCs clearly prefers the 1-factor model.
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ex. Low school admission - binary 2-factor model
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ex. Low school admission - binary 2-factor model

Factor Model
Nambr of Factors

Correlstiontructure

Factor
Madel

211 Wit

Response variable

v

Varible Selected

Random ffects
st

Distrbution
biomisl

Lk Function
tegt

Factor

2t

ot -

Factor Model

Nambr of Factors

Factor
Macel

511 Wsbiect)

Response variable

Varitle

Random ffects
st

Distrbution
biomisl

Lk Fonction
legt

Factor

2t

Correlstionructure

st

Factors e

Selected

Factor Model

Nambr of Factors

Factort

Correlstionructure

st -

Factors  Foctord  Factors Foctord

Factor
Madel

VL1 bt

Response variable

v -

Varible Selected

Random ffects

st

Distrbution

biomisl -

Lk Foncion

Factor

2t -

432 /569



ex. Low school admission - binary 2-factor model

Binary 2-factor model summary

Lambda
X A2 As P
Coefficient 047960  0.44050 0.50780  0.42360
SE 012060 0.10370 0.11010  0.09860
Gamma
st N2 Y22
Coefficient  0.39020  0.45770  0.55830
SE 010720  0.11580  0.07900
Beta
Box B Boz Bos Bos Bos
Coefficient  -1.38700  -0.52030 -0.11770  -0.65100 -1.07030  -0.90770
SE 0.08130 0.04720 0.07030 0.05110 0.06130 0.05400
Likelihood
deviance df cAIC

162817000  2044.47000  2548.61232
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Chapter 8. Survival Analysis

@ In this chapter we study the analysis of incomplete data, caused by censoring in

event-time survival data.
@ Cox’s proportional hazards model is widely used for the analysis of survival data.

@ Frailty models with a non-parametric baseline hazard extend proportional hazards
model by allowing random effects in hazards and have been widely adopted for the
analysis of survival data (Hougaard, 2000; Duchateau and Janssen, 2008).

@ Using h-likelihood theory we can show tha Poisson HGLM algorithms can be used to
fit these models.

@ Ha, Lee, and Song (2001) showed that with the h-likelihood it is easy to eliminate
nuisance parameters by using a plug-in method and a fast estimation algorithm can
thereby be used.

o Either a log-normal or gamma distribution can be used as the frailty distribution.

Therefore, normal and log-gamma distribution can be adopted for the log frailties.
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Frailty models

o Data is consist of right censored observations from g subjects, with n; observations
each (i=1,---,q).

e n=).n;: total sample size

@ Tj : survival time for the j-th observation of the i-th subject (j =1,--- n;).

@ Cj : corresponding censoring time

o yj = min{Ty, G}, 0 =I(T; < G)

@ u; : unobserved frailty for the i-th subject

@ The conditional hazard function of Tj is of the form
i (t|ui) = o(t) exp(x] B)u

where Xo(+) is an unspecified baseline hazard function and 8 = (51,--- ,8p)" is a

vector of regression parameters for the fixed covariates x;.

@ Here, the term x] 3 doesn’t include an intercept term because of identifiability.
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Frailty models

@ We assume that the frailties u; are i.i.d. random variables with a frailty parameter a.
@ We can assume gamma and log-normal distributions for u;.
(i) gamma frailty with E(u;) = 1 and var(u;) = «
(ii) log-normal frailty having v; = log u; ~ N(0, &)
Multi-component frailty models
o X : n x p model matrix
0 ZW : px gr model matrices correspong to the frailties v

o v v are independent for r # /
X8+ PP ON IR (ON O

o Z) has indicator values such that Zs(t') = 1 if observation s is a member of subject t
in the r-th frailty component, and 0 otherwise.
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ex. Kidney infection - kidney(page224).csv

o Data from study on the recurrence of infections in kidney patients who are using a
portable dialysis machine (McGilchrist and Aisbett, 1991).

@ Times until the 1st and 2nd recurrences of kidney infection in 38 patients are
recorded.
@ The catheter is later removed if infection occurs and can be removed for other
reasons, which we regard as censoring (about 24%).
id : 38 patients
time : time until infection since the insertion of the catheter
status : censoring indicator. 1(infection), O(censoring)
age : age of patient
sex : 1(male), 2(female)
disease : disease types. GN, AN, PKD, other
frail : estimated frailty (McGilchrist and Aisbett, 1991)
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ex. Kidney infection - kidney(page224).csv

Frailty model with 2 covariates
o We fit frailty models with 2 covariates, the sex and age.

@ The survival times for the same patient are likely to be correlated because of a shared
frailty describing the common patient’s effect. So we consider patient as the frailty.

@ The standard shared frailty model assumes that censoring times are independent of

event times within clusters.

o For further discussions in survival analysis, see Ha, Jeong, and Lee (2017).
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ex. Kidney infection - Kaplan-Meier estimate

Kaplan-Meier

Estimator
Survival time

time

Intial Time

Indicator

status
“ Use Group
Groups

sex

 Log-RankTest

Data Summary

records n.max nstart events ‘rmean ‘se(rmean) median 0.95LCL  0.95UCL

7600  76.00 76.00 58.00 137.02 19.77 78.00 38.00 141.00

Group Data Summary

records nmax nstart events ‘rmean *se(rmean) median 0.95LCL  0.95UCL

sex=1 20.00 20.00 20.00 18.00 65.29 29.85 22.00 12.00 30.00

sex=2 56.00 56.00 56.00 40.00 161.58 22.94 130.00 66.00 185.00

Log-Rank Test Table
N  Observed Expected
20.000 18.000 10.187

56.000 40.000 47813

Log-Rank Test Results

(0-E)"2/E  (O-E)"2/V
5.993 8.308

1277 8.308

Chisq  Degreesof freedom  p-value

8.308 1.000

0.004
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ex. Kidney infection - Kaplan-Meier estimate

Strata =+ All
1.00
0.75
=
3
©
Qo
<]
S.0.50
i)
=
2
3
w
0.25
0.00
0 100 200 300 400 500 600
Time
Number at risk
s
g 76 27 10 7 5 3 0
@
0 100 200 300 400 500 600
Time
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ex. Kidney infection - Kaplan-Meier estimate

Strata =+ sex=1 =+ sex=2

1.00

0.75
=
3
©
Qo
<]
S 0.50
IS
2
2
3
w

0.25

0.00 =l

0 100 200 300 400 500 600
Time
Number at risk
o s 20 3 1 1 1 1 0
o
B sex=2{ 56 24 9 6 4 2 0
0 100 200 300 400 500 600
Time

441 /569



Kidney infection - log-normal frailty model

i Random Eff
Frailty Model andom Effects
id

Distribution for Random effects

Model :
gaussian -
Surv{time, status == 1) ~ sex+age + (1]id)
Censoring Indicator
.
status hd
Survival Time
time v ege .
Additional Settings
Initial Time Order of Laplace Approximation for Likelihood(mean) and
Restricted Likelihood(Dispersion)
Variable Selected Order for Mean
id sex
time age 0 M
status
disease Order for Dispersion
frail

1 -

®®
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ex. Kidney infection - log-normal frailty model

Log-normal frailty model summary

Model Description
Model Number of data  Number of events ~ Method

1 log-normal frailty model 76 58 HL(0,1)

Estimates from the mean model
Estimate  Std. Error t-value p-value
sex  -1.38043 043082 -3.20419 000135

age 0.00488 0.01209 040412 0.68612

Estimates from the
dispersion model

Estimate  Std. Error

id 053448 0.33842

Likelihood
— 2hy

330.40166

AIC
cAlC

362.45706

— 2k,

390.77118

mAIC

370.70076

= 2pg(hy)

371.54037

rAIC

373.54037
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ex. Kidney infection - log-normal frailty model

Normal Probability Plot

Histogram of Frailty Effects1

Sample Quantiles

Frequency

-1 o
Theoretical Quantile:

1 2
S
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20
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Kidney infection - gamma frailty model

i Random Eff
Frailty Model andom Effects
id

Distribution for Random effects
Model
gamma -
Surv{time, status == 1) ~ sex+age + (1]id)
Censoring Indicator

. . status -
Survival Time

time -

Additional Settings

Initial Time Order of Laplace Approximation for Likelihcod(mean) and
Restricted Likelihood(Dispersion)
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time age 0 T
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ex. Kidney infection - gamma frailty model

Gamma frailty model summary

Model Description
Model Number ofdata  Numberof events ~ Method
1 gammafrailtymodel 76 58 HL(0,2)
Estimates from the mean model
Estimate  Std. Error t-value p-value
sex  -1.69144 048279 -3.50350  0.00046

age 0.00653 0.01252  0.52148  0.60203

Estimates from the
dispersion model

Estimate  Std.Error

id 056116 0.28029

Likelihood
— 2hy

324.07846

AlC
cAlC

358.93087

—2h,

391.74153

mAIC

370.34260

— 2pgu(hy)
370.89245

rAIC

372.89245

= 2s5,(hy)

368.87941
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ex. Kidney infection - gamma frailty model

Normal Probability Plot

Histogram of Frailty Effects1
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ex. Rat - rats(page228).csv

o Dataset is based on a tumorigenesis study of 50 litters of female rats (Mantel et al.,
1977).

@ For each litter, 1 rat was selected to receive the drug and the other 2 rats were
placebo-treated controls.

@ Death before occurrence of tumor yields a right-censored observation. 40 rats
developed a tumor, leading to censoring of about 73%.

@ The survival times for rats in a given litter may be correlated due to a random effect
representing shared genetic or environmental effects.
litter : 50 litters
rx : 1(drug), O(placebo)
time : time to development of tumor or death (weeks)

status : censoring indicator. 1(occurence), 0(death, censored)
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ex. Rat - rats(page228).csv

Log-normal frailty model

We fit models with 1 covariate, the rx. Also, we consider litter as the frailty.
From the results, the rx group has significantly higher risk than the control group.
The variance estimate of the frailty is & = 0.4272 (SE=0.4232).

Although we report the SE of the «, one should not use it for testing the absence of
frailty @ = 0 (Vaida and Xu, 2000).

A null hypothesis is on the boundary of the parameter space, so that the critical
value of an asymptotic (x*(0) + x?(1))/2 distribution is 2.71 at 5% significant level
(Lee, Nelder, and Pawitan, 2017; Ha, Su;vester. Legrand, and MacKenzie, 2011).

The difference in deviance —2pg3,.,(h,) between Cox's PHM without frailty (364.15)
and log-normal frailty model (362.56) is 1.59(< 2.71), indicating that the frailty
effect is non-significant.
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ex. Rat - rats(page228).csv

@ For the selection of a model between non-nested models, we may use 3 AIC criteria
(Lee, Nelder, and Pawitan, 2017; Ha, Lee, and MacKenzie, 2007; Donohue,
Overholser, Xu, and Vaida, 2011).

cAIC = — 2hg + 2df.
mAIC = —2p,(hy) + 2df,,
rAIC = — 2pg ,(hp) + 2df,

where ho = £ .

o df. = trace{D™*(hp, (8,v))D(ho, (B,v))} is an effective degrees of freedom
adjustment for estimating the fixed and random effects. It is computed by using the
Hessian matrices D(h,, (8,v)) = —8%h,/0(8,v)?, D(ho, (8,v)) = —0%ho/d(B,v)>.

o df,, is the number of fixed parameters.

o df, is the number of dispersion parameters (Ha et al., 2007).
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ex. Rat - log-normal frailty model

Frallty Model Random Effects
litter

Distribution for Random effects

Model
gaussian -
Surv(time, status == 1) ~ rx + (1[litter)
Censoring Indicator
~
status h
Survival Time
time e e :
Additional Settings
Initial Time Order of Laplace Approximation for Likelihood(mean) and
Restricted Likelihood(Dispersion)
Variable Selected Order for Mean
litter (2
time !
status

Order for Dispersion

1 -

®®
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ex. Rat - log-normal frailty model

Log-normal frailty model summary

Model Description
Model Number of data ~ Number of events ~ Method

1 log-normal frailtymodel 150 40 HL(1,1)

Estimates from the mean model
Estimate  Std.Error t-value p-value

x 091067 0.32256  2.82325 0.00475

Estimates from the
dispersion model

Estimate  Std.Error

litter  0.42719 042322

Likelihood
—2ho =2k, —2pu(hy)  —2ppu(hy)
335.97354  397.35639  362.13803 362.56311

AIC
cAIC

362.22377

mAIC

366.13803

rAIC

364.56311
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ex. Rat - log-normal frailty model

Normal Probability Plot Histogram of Frailty Effects1
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ex. Rat - gamma frailty model

Frailty Model

Model

Surv(time, status == 1) ~ rx + (1[litter)

Survival Time

time e

Initial Time

Variable Selected
litter (24

time

status

®®

Random Effects
litter
Distribution for Random effects

gaussian -

Censoring Indicator

status A

Additional Settings

Order of Laplace Approximation for Likelihood(mean)
and Restricted Likelihood(Dispersion)

Order for Mean

1 -

Order for Dispersion

2 -~
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ex. Rat - gamma frailty model

Gamma frailty model summary

Model Description

Model Number of data ~ Number of events ~ Method
1 gamma frailty model 150 40 HL(1,2)
Estimates from the mean model|
Estimate  Std. Error t-value p-value
24 0.91251 032361 281977 0.00481
Estimates from the
dispersion model
Estimate  Std.Error
litter  0.57343 0.59680
Likelihood
—2ho “2 )~ 2sully)  —2psu(Ry)
33168643  413.68839 365.34074 361.70667 365.75921

AIC
cAlC mAIC

365.29202  365.70667

— 285, (hy)

362.12515

rAIC

364.12515
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ex. Rat - gamma frailty model

Normal Probability Plot Histogram of Frailty Effects1
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ex. CGD infection - cgd(page230).csv

@ Dataset consists of a placebo-controlled randomized trial of gamma interferon
(rIFN-g) in the treatment of chronic granulomatous disease (CGD) (Fleming and
Harrington, 1991).

@ 128 patients from 13 centers were tracker for around 1 year.
@ The survival times are the recurrent infection times of each patient.

@ Censoring occurred at the last observation for all patients, except one, who
experienced a serious infection on the date he left the study.

@ About 63% of the data were censored.

@ The recurrent infection times for a given patient are likely to be correlated. Also,
each patient belongs to the 1 of the 13 centers.

@ The correlation may be attributed to patient effect and center effect.
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ex. CGD infection - cgd(page230).csv

tstart - tstop : recurrent infection times of each patient or censoring time
id : 128 patients

center : 13 centers

treat : rIFN-g or placebo

status : censoring indicator. 1(infection observed), 0(censored)
random : data of randomization

sex, age, height, weight : information about patients at study entry
inherit : pattern of inheritance

steroids : use of steroids at study entry. 1(yes), 0(no)

propylac : use of propylac antibiotics at study entry. 1(yes), 0(no)
hos.cat : categorization of the centers into 4 groups

enum : observation number within subject
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ex. CGD infection - cgd(page230).csv

Multilevel log-normal frailty model

o We fit a multilevel log-normal frailty with 2 frailties and a single covariate,
treatment. Here, the 2 frailties are random center and patient effects.

XB + 7®,® + 7@,
V(l) ~ N(Ov allth)
V(2) ~ N(Ov a2lq2)

1)

where v(¥) is center frailty, and v® is patient frailty.

@ For testing the need for a random component (a1 = 0 or ax = 0), we use the
deviance —2pg..,(hp), and fit the following 4 models.
M1 Cox’s model without frailty (cq =0, ao = 0) : —2pg,(hp) = 707.48
M2 model without patient effect (aq > 0, a2 = 0) : —2pg,,(hp) = 703.66
M3 model without center effect (aq =0, a2 > 0) : —2pg,.(hp) = 692.99
M4 multilevel model (a1 > 0, a2 > 0) : —2pg,.,(h,) = 692.95
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ex. CGD infection - cgd(page230).csv

@ The deviance difference between M3 and M4 (0.04 < 2.71 = x2 15(1)) indicates the
absence of the random center effects.

@ The deviance difference between M2 and M4 (10.71) indicates the necessity of
random patient effects.
@ The deviance difference between M1 and M3 (14.49) indicates the becessity of

random patient effect even without random center effects.

o cAIC, mAIC and rAIC also choose M3 among the M1 - M4.
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ex. CGD - multilevel log-normal frailty model (M4)

Frailty Model

Model

Surv(tstop - tstart, status == 1) ~ treat +

(1|center) +(1]id)

Survival Time

tstop

@ Initial Time
Initial Time

tstart

Variable
id
center
random
sex
age
height
weight
inherit
steroids
propylac
hos.cat
tstart
enum
tstop
status

Selected

treat

Random Effects
center id
Distribution for Random effects

gaussian -

Censoring Indicator

status -

Additional Settings

Order of Laplace Approximation for Likelihood(mean)
and Restricted Likelihood(Dispersion)

Order for Mean

1 -

QOrder for Dispersion

1 -

461 /569



ex. CGD - multilevel log-normal frailty model (M4)

Model summary for M4

Model Description AIC
Model Number of data  Number of events ~ Method cAlC mAIC
1  log-normal frailtymodel ~ 203 76 HL(1,1) 684.91665  698.62963

Estimates from the mean model
Estimate  Std.Error t-value p-value

treatrlFN-g  -1.18425 0.34065  -347642  0.00051

Estimates from the
dispersion model

Estimate  Std. Error

center  0.03003 0.15720

id 1.00206 0.50880
Likelihood
—2hg —2hy = 2pu(hy)  —2ppe(hy)
603.31409  853.69944 692.62963 692.94167

rAIC

696.94167
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ex. CGD - multilevel log-normal frailty model (M4)

Normal Probability Plot Histogram of Frailty Effects1 Normal Probability Plot Histogram of Frailty Effects2
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ex. Bladder cancer - bladder(page232).csv

@ Therneau and Lumley (2015) reported data on recurrences of bladder cancer, which

were used to demonstrate methodology for recurrent event modeling (Wei et al.,
1989).

o 85 patients were assigned to either thiotepa or placebo, and reports up to 4
recurrences for any patients.
start : start of interval (O or previous recurrence time) (month)
stop : tumor recurrence or censoring time (month)
event : censoring indicator. 1(recurrence), O(otherwise)
id : 85 patients
rx : treatment. 1(placebo), 2(thiotepa)
number : initial number of tumours. (8=8 or more)
size : size of largest initial tumor (cm)

enum : observation number within subject
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ex. Bladder cancer - bladder(page232).csv

Log-normal frailty models

@ We fit log-normal frailty models with 3 covariates, the rx, the number, and the size
using HL(1,1).

@ The thiotepa treatment has a marginally significant lower recurrent risk than in the
placebo group controlling initial number of tumors.

@ The deviance difference between Cox's PHM (1029.4) and log-normal frailty model
(1024.1) is 5.3(> 2.71), indicating that the frailty effect is significant (p=0.011).

Gamma frailty model

@ The results from gamma frailty model using HL(1,2) are slightly different to those of
log-normal frailty, particularly for estimation of .

@ AIC indicates that log-normal and gamma frailty models are better than Cox's PHM.

@ Between log-normal and gamma frailty models, AlCs indicate that the log-normal
frailty model is better than the gamma frailty model.
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ex. Bladder - log-normal frailty model

Model Random Effects

id
Surv(stop - start, event == 1) ~ rx+number+size

+(Llid) P Distribution for Random effects
N . gaussian -
Survival Time
stop v Censoring Indicator
t -
“ Initial Time even
nitial Time Additional Settings
start - Order of Laplace Approximation for Likelihood(mean)
and Restricted Likelihood(Dispersion)
Order for M
Variable Selected raerforiean
id [ 1 v
start number
stop size Order for Dispersion
event
enum 1 h
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ex. Bladder - log-normal frailty model

Log-normal frailty model summary

Model Description
Model Number of data

1 log-normal frailty model 178

Estimates from the mean model

Estimate  Std. Error t-value
[23 -0.45417 027440  -1.65514
number 0.20490 0.07140 286984
size -0.00444 009143  -0.04857
Estimates from the
dispersion model
Estimate  Std. Error
id 050581 029326

Number of events

112

p-value
0.09790
0.00411

0.96126

Likelihood
Method — 2k —2h, = 2py(hy)
HL(1,1) 95001755  1075.66091 101684131
AIC
cAIC mAIC rAIC
101300296 102484131 102607127

= 2p(hy)

102407127
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ex. Bladder - log-normal frailty model

Normal Probability Plot Histogram of Frailty Effects1
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Grouped duration model

@ T; : duration time until occurence of event for the i-th individual

o T; is not observed exactly, but we have information that the event happened in a
specific interval.

The durations are observed at the t-th time point a; (t =1,--- ,r) with the ap = 0.

d { 1 i-th individual experienced event during the t-th time interval
it =
0 ow

o We considered the binary variable di; as the response variable with the corresponding
xi¢ observed at the (t — 1)-th time point a;—1.

(Starting point)
. a =0 a; az Ar_y a
Time
at observation [ ¥ ¥ f )
Response i di dyy
Covariate X Xip Xir

Figure: Structure of grouped duration data
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Grouped duration model

@ Given the random effect v;, the conditional hazard rate at time T; = u for
a1 <u<arwitht=1,---,r of the form

Aulvi) = Xo(u) exp(x; B+ vi)

@ M\o(+) : baseline hazard function

@ [ : regression coefficients of covariates of interests

@ x; : risk factors observed over multiple time points (t =1,---,r)
@ v; : frailties of individuals

@ Ha, Jeong, and Lee (2017) showed that the responses dj: follow the Bernoulli HGLM
with the complementary log-log link

log(—log(1 — pit)) = v« + xii B+ vi

where piy = Pr(di: = 1|v;) and ~: = log f::_l Ao(u)du.
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ex. Smoke onset - SmokeOnset.csv

o For 1556 students in the Los Angels area, onset of smoking is oberved at each of 3

timepoints ai, a2, and as.
@ a; : starting time for investigation
@ ay : l-year follow-up and asz : 2-year follow-up
@ These event times are grouped at the 3 intervals [0, a1), [a1, a2), [22, a3).
@ For each student, we generate the following 4 responses.
(i) dii =1 if he/she started smoking at intervals at [0, a;)
(smkonset = 1)
(ii) (dn,d2) = (0,1) if he/she started smoking at intervals at [a1, a2)
(smkonset = 2)
(i) (di, di2, dis) = (0,0, 1) if he/she started smoking at intervals at [ay, a3)
(smkonset = 3)
(iv) (di,di2,diz) = (0,0,0) if he/she had not smoked until as (censored)
(smkonset = 3)
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ex. Smoke onset - SmokeOnset.csv

school, class, student : 28 school, 134 class, 1556 students
smkonset : i-th time interval when the event occur

event : censoring indicator. 1(smoked), O(otherwise)

int : constant value 1

SexMale : gender of student. 1(male), O(female)

cc : indicating whether the school was randomized to a social-resistance classroom
curriculum. 1(yes), 0(no)

tv : indicating whether the school was randomized to a media (television) intervention.
1(yes), 0(no)

cctv : ccXtv
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ex. Smoke onset - SmokeOnset.csv

Grouped duration model
@ 3 covariates are considered SexMale, cc, tv.

@ Deviance diffence between Cox's PHM (40189.8) and log-normal frailty model
(40123.6) is 66.2(> 2.71), indicating the necessity of frailty.

@ From the output, male has higher risk for smoking than female.

@ Schools with cc or tv give lower risk for smoking to their students.
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Frailty Model

Model

Surv(smkonset, event == 1) ~ SexMale+cc+tv +

(1Ischool)

Survival Time

smkonset

Initial Time

Variable Selected

school SexMale
class cc
student tv
smionset

event

int

cctv

ex. Smoke onset - group duration model

Random Effects
school
Distribution for Random effects

gaussian -

Censoring Indicator

event A

# Grouped Duration

Additional Settings

Order of Laplace Approximation for Likelihood(mean)
and Restricted Likelihood(Dispersion)

Order for Mean

Q -

Order for Dispersion

1 -
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ex. Smoke onset - group duration model

Group duration model summary

Model Description
Model Numberofdata  Number of events

1 log-normal frailty model 1556 634

Estimates from the mean model
Estimate  Std.Error t-value p-value
(Intercept) ~ -276.10546 0.68315  -404.16762  0.00000

gamma2 -327.81546 100000 -327.81546  0.00000

gamma3 1.52346 0.00000 Inf  0.00000
SexMale 25.65667 0.33746 7602958  0.00000
cc -19.94593 0.06051  -329.65510  0.00000
tv -7.08073 0.06036  -117.31535  0.00000

Estimates from the
dispersion model

Estimate  Std. Error

school  0.16450 081120

Method

HL{(0,1)
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ex. Smoke onset - group duration model

Sample Quantiles

Estimated Frailty Effects

Normal Probability Plot Histogram of Frailty Effects1

Frequency

IINII

-1 1
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Competing risk models

e Fori=1,---,q,j=1,---,n,and k=1,--- | K,
@ Tjy : time to type k for the j-th observation in the i-th cluster

o C; : independent censoring time

@ Observed event y; = min( Tj1, Ti2, -+, Tik, Cjj)
@ Event indicator i = I(y; = Tix)
@ The cause-specific hazard function conditional on the log-frailty v; = (vi1,--- , vik) is

Xk (tvi) = Aok (t) exp(x; Bic + vix)

where Aok(t) is the unspecified baseline hazard function for event type k.
® Bk = (B, -+ ,Bkp)" : fixed parameters for event type k
o x; : fixed covariates

@ v : random effect for type k event in cluster i
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Competing risk models

o Consider K = 2.

@ Event times from cause 1 and 2 would follow a cause-specific proportional hazards
model

Ain(t|vi) = Aor(t) exp(x} By + vi1)
Ai2(t|vi) = Aoa(t) exp(xj B2 + viz)

where vi1 and vi; might be correlated.

@ In the traditional cause-specific analysis, patients who failed from cause 2 are
treated as censored for the analysis of type 1 events, which ignores a potential

correlation between vj; and vi,.

o Competing risks data usually arise when an occurrence of a competing event

prevents the occurrence of the event of interest.

@ Treating the competing event as a censoring can lead to biased results (Pepe and
Mori, 1993).
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ex. Simulated data - simuldata(page240).csv

o We used a simulated data set generated in the R package crrSC (Zhou et al., 2012,
2015).

@ The data consists of a data frame with 200 observations.
ftime = time : event time

fstatus = status : event type. 1(event of interest, 112 observations), 2(competing event,
47 observations), 0(censoring, 41 observations)

x = z : binary covariate generated with probabilty of 0.5

Type 1 event
/

Entry
hN

ij2 Type 2 event

ID : 100 cluster with each cluster size 2

Figure: Path diagram for the competing risk frailty model
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ex. Simulated data - simuldata(page240).csv

Cause-specific hazard frailty model
o Consider the cause-specific hazard frailty model (Ha, Jeong, and Lee, 2017).

@ M\ : conditional hazard function for the j-th observation in the i-th cluster that
failed from cause k (given a shared log-frailty v;)

X (tvi) = Aar(t) exp(xj B1 + vi)
)\,‘j2(i‘|V,‘) = )\02(t) exp(x,-;rﬁz + 'yv,-)

where v; ~ N(0,0?)

o If v > 0[y < 0], a cluster with higher frailty in type 1 event will experience an eariler
[delayed] type 2 events (Huang and Wolfe, 2002).

@ v =1: the effect of the frailty is identical for both events.
@ 7 =0 : two event rates are not associated.

@ The estimate of shared parameter 4 = —1.218 shows a negative association between

2 events.
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ex. Simulated data - competing risk model

Competing Risk
Model for Interesting Event

Survitime, status == 1) ~x+ (1/ID)

Modelfor Competing Event

Survltime, status =

x+(1/iD)

Interesting Event

Survival Time

time

Initial Time

Variable Selected

ftime x
fstatus
z

D
time:
status

®®

Random Effects
D

Censoring Indicator

status

Censoring Value

1

Competing Risk
Model for Interesting Event

Survitime, status == 1) ~x+ (1]ID)

Modelfor Competing Event

Surv(time, status == 2) ~ x+ (1]ID)

Survival Time

time

Initial Time

Variable

fstatus
2

D
status

Random Effects

D

Censoring Indicator

status

Censoring Value

1

Competing Event
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ex. Simulated data - competing risk model

Competing risk model summary

Coefficients
Estimate  Std.Error t-value p-value
Interesting Event 0.13244 0.19524  0.67834  0.49756

Competing Event 0.74953 031609 237123 0.01773

Estimates
Logarithm of Variance of Random Effect = Shared Parameter

0.57203 -1.21764
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ex. Simulated data - competing risk model

Sample Quantiles

Estimated Frailty Effects

Normal Probability Plot Histogram of Frailty Effects
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H-likelihood theory for the frailty model

The h-likelihood gives a straightforward way of handling non-parametric baseline hazards.
The h-likelihood is defined by

h=h(B; X0, @) = lo+ &1
bo =, log f(yy, 8jlui; B, Xo) = 3, d{log No(yis) + ms} — 2, Mo(vi) exp(1mi)
b=, log f(vi; a).
b= Z log ({S(YU)}I_‘SU{f(yU)}é,-j)
;

=D 1o (exp(~AL) )} )

y

=) {=Alg) + 65 log A(yy)}

y

= Z —No(yy) exp(ny) + Z dii{log Ao (yi) + mij}

i i
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H-likelihood theory for the frailty model

@ The functional form of Ao(t) is unknown. Hence, we consider Ag(t) to be a step function
with jumps at the observed event time (Breslow, 1972).

where where y(, is the k-th smallest distinct event time among the yj's, and
Aok = Ao(Y(k))-

@ Ha, Lee and Song(2001) proposed the use of the profile h-likelihood with ¢ eliminated,
r* .= h|)\0:/)\\0, given by

r*=r*(B8,a) =Ly + 41

where £§ = Zu log f*(y,-j,6,-j\u,-;ﬁ,/)\\o) does not depend on ). And

O S “
0k\Ps -
(i) € Rk exp(15)

are solutions of the estimating equations, Oh/9Aox = 0. d(k) is the number of events at y(y)
and Ry = {(/,J) : ¥ij > Yy} is the risk set at y(.
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H-likelihood theory for the frailty model

@ Therneau and Grambsch (2000) and Ripatti and Palmgren (2000) proposed h-likelihood,
called penalized partial likelihood (PPL) hyp.

ho(Bov,a) =Y oy — > duylogq Y exp(ng) o+
i k

7€Rw

@ Ha, Lee, and Song (2001) and Ha et al. (2010) have shown that r* is proportional to the

PPL hyp.
r = Z d(k) log Aok + Z dijmij — Z diy + 4
k ij k
=hp + Z d(ky{log d(xy — 1}
k
where Zk d(k){log diy — 1} is a constant which does not depend upon unknown

parameters.

@ Thus, the h-likelihood procedure for HGLMS of Lee and Nelder (1996, 2001) can be
extended to frailty models based on h, (Ha et al., 2010).
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Estimator of baseline hazard function, Ao(t)

@ When there is no such random effects,

»(ho(t)) H/\o (Vi) exp(BT X)) | exp ZAo(y,)exp(ﬁm

Jj=1

o Let Ao; = A(y) (i=1,--, D) and Ao(y;) = Zymgy,- Xoi = 30 Ri(i))ai- Then,

D n
Lp(Xo1; Xo2; - -+, dop) = H)\Oi exp(B8" X)) exp | —Aoi Z Ri(y(iy) exp(B T X))

@ The maximum likelihood estimator of Ag; is given by

N 1
Noi = —
i 21 Rilvy) exp(8T X))
~ t n N,'
Rolt) = 2 L)

0 Do Rilu)exp(BT X))

where N;(t) counts the number of events in [0, t] for unit i and > Ni(t) = N(t).

487 /569



Estimator of baseline hazard function, Ao(t)

@ Note that

~ o SO dN(t)
) ex T x. — " X ty. i=1
jzzl:Ao(yJ)e (B X)) ;/0 I(y; > t)exp( XJ)Zle Ri(t) o0 (37 X))

= /oo dN(t)
0

Lo(Ro(1)) = [H Ao(y(i)) eXP(/BTX(i))] exp [— Z No(y)) exp(Bth)‘|

j=1

D oo
= [HAO(Y(i))eXP(BTX(i))] exp {—/ dN(t)
j 0

@ Then,
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Estimator of baseline hazard function, Ao(t)

@ Note that

to=">_{8;{log No(yy) + ms} — Nolyy) exp(ny)}

)

= Z d(x) log Mok + Z Simi — Z A(ok) Z exp(njj)
k ij k

() ER(Y(k))

~ d
@ Plugging in A\k(B,v) = Z = )
(eRyy T

& = Z s log Mok + Z Sijmij — Z k)
k i k
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Chapter 9. Joint Models

@ In this chapter, we consider data analysis for multivariate responses where at least
one response is time-to-event.

@ Separated analysis ignoring the inherent association between the outcomes from the
subject can lead to a biased result (Guo and Carlin, 2004).

@ Thus, joint modeling has been widely studied (Henderson et al. 2000; Ha et al.,
2003; Rizopoulos, 2012).

@ An unobserved random effect can be used to account for the association among

multivariate outcomes.

@ For the analysis of such dataset, the h-likelihood approach is very effective.
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ex. Serum creatinine - scr(page254).csv

o Dataset from the clinical study to investigate the chronic renal allograft dysfunction
in renal transplants (Sung et al., 1998).

@ The renal function is evaluated from the serum creatinine (sCr) values. Since the
time interval between the consecutive measurements differs from patient to patient,
we focus on the mean creatinine levels over 6 months.

@ A Graft-loss time is observed from each patient.

@ During the study period, there were 13 graft losses due to the kidney dysfunction.
For other remaining patients, we assumed that the censoring occurred at the last
follow-up time (about 88%).
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ex. Serum creatinine - scr(page254).csv

id : 112 patients

month : visiting time (month)

cr : serum creatinine value (mg/dL)

sex : gender. 1(male), O(female)

age : age of patients

icr : reciprocal of serum creatinine value = 1/cr
sur_time : graft-loss time (month)

status : censoring indicator. 1(occurrence), O(censoring)
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ex. Serum creatinine - scr(page254).csv

@ We are interested in investigating the effects of covariates over 2 response (sCr
values and a graft-loss time).

@ Ha et al. (2003) considered month, sex and age as covariates for sCr. Also they
considered sex and age as covariates for the loss time.

@ We consider the standard mixed linear model we use values 1/sCr as responses y;;.

Graft-loss time

T

Figure: Path diagram for the joint model for repeated measures and survival time
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ex. Serum creatinine - scr(page254).csv

Joint model

@ For the 1/sCr values, consider a linear mixed model
Yij = Xfijﬂ + vii + €

where xy; are covariates, vi; ~ N(0,0%), and e; ~ N(0, 02).

@ For graft-loss time t;, consider a frailty model with the conditional hazard function
)\(t,'|V1,') = Ao(t,‘) eXp(X2TI-($ =+ ’}/Vl,')
where Ao(t) is the baseline hazard function, x»; are between-subject covariates, and

v is the shared parameter.

@ Ha et al. (2003) considered a Weibull model for the baseline hazard function where
Xo(t) = 7t" "1 with a shape parameter 7.

@ Also, we can fit the non-parametric baseline hazard model.

@ The values of cAIC show that non-parametric baseline hazard model is preferred to

the Weibull baseline hazard model.
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ex. Serum creatinine - scr(page254).csv

Separate model

@ We can fit 2 random effect models separately with LMM and following frailty model.
Vi = X{zB + vii + €
where xy; are covariates, vi; ~ N(0,0%), and e; ~ N(0, 02).
A(tilvai) = Xo(t) exp(xg;:0 + voi)

where vo; ~ N(0, 02,).
@ The cAlC can be computed by adding cAIC from two models.

@ We can see that joint models are preferred to corresponding separate models.
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Joint Model
Nurmber of Response Varisbles Corrlation structure

shared

Datafor Survival Analysis

sor_sunipage2sdlcsv

e1

Model for Iteresting Event

Survsur_time, status == 1) ~sex + age + (1]

Interesting Event
Survival Time.

Iniial Time
Variable Selected

ae

®®

MakeInteraction Variable

Random Effects

i

Censoring Indicator
status

Censoring Value
1

Modelfor Baseline Hazard

Semi-parametric

Joint Model

ex. Serum creatinine - Joint model (non-parametric baseline hazard)

Data for Survival Analysis

scr_surv{page254)csv

shared

Model for Mean

Response1

e month +sex age (i)

Model for Mean
Response Variable

Variable

Make Interaction Variable.

Random Effects

i

®®

Selected
et

e

496 / 569



ex. Serum creatinine - Joint model summary

Coefficients

Klntercept.
month

sex

age

sex.d

age.l

Estimates
phi_h

1 001330

beta_h

0.34562

-0.00116

-0.11145

0.01046

-0.85516

-0.34599

alpha_h

0.03012

se_beh
0.13745
0.00035
0.04842
0.00355
153585

0.11476

rho_h

-15.74850

t_value

2.51457

-3.34591

-2.30185

2.94918

-0.55680

-3.04115

p_value
0.01192
0.00082
0.02134
0.00319
0.57766

0.00236
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ex. Serum creatinine - Random effect inferences

Normal Probability Plot Histogram of Frailty Effects
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ex. AIDS - aids(page257).csv

o Data were collected in a recent clinical trial to compare the efficacy and safety of 2
antiretroviral drugs in treating patients who had failed or were intolerant of
zidovudine (AZT) therapy (Rizopoulos, 2015).

@ 467 HIV-infected patients were enrolled and randomly assigned to receive either
didanosine (ddl) or zalcitabine (ddC).

@ The number of CD4 cells per mm? of blood were recirded at study entry, and again
at the 2, 6, 12, 18 month visits.

o Times to death were also recorded with a 40% censoring rate.
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ex. AIDS - aids(page257).csv

patient : 467 patients

time : the time to death of censoring

death : censoring indicator. 1(death), 0(censoring)
CD4 : the CD4 cells count

month : recorded time points

drug : ddC(zalcitabine), ddl(didanosine)

gender : male, female

prevOl : AIDS diagnosis at study entry

AZT : intolarance(AZT intolarance), failure(AZT failure)
start : start of time in the first interval

stop : end of time in the first interval

event : 1(death in the first interval), O(censoring)

y : CD4Y/?
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ex. AIDS - aids(page257).csv

@ Rizopoulos (2015) considered a joint model for the square root of CD4 value y;; for

the j-th visit and the time to death t; of the i-th patient.

@ We consider month and drug as covariates for y;;, and drug for t;.

Month

Drug

By
B2

Z

Square root of CD4 count
Y.

Death time

-
‘ Entry H Event l

Figure: Path diagram for the joint model for repeated measures and survival time on AIDS data
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ex. AIDS - aids(page257).csv

Joint model

@ For the response yj;, consider a linear mixed model.
Yij = Xfijﬂ + vii + €

where x];; are covariates, vi; ~ N(0,02;) and e; ~ N(0, 02).

@ For death time t;, condider a frailty model with the conditional hazard function
Ati[vii) = Ao(ti) exp(x5;0 + yvai)
where \o(t) is the baseline hazard function, xJ; are between-subject covariates and =

is the shared parameter.

o Rizopoulos (2015) considered a Weibull model for the baseline hazard function
where Xo(t;) = 7t" ! with a shape parameter 7.

@ We can also fit a non-parametric baseline hazard model.

@ The values of cAIC show that the Weibull baseline hazard model is preferred to the

non-parametric baseline hazard model.
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ex. AIDS - aids(page257).csv

Separate model

@ We can fit 2 random effect models separately with following frailty model.
Vi = X{zB + vii + €
where x];; are covariates, vi; ~ N(0,02;) and e; ~ N(0, 02).
A(ti]vai) = Xo(ti) exp(xg;:0 + voi)

where vo; ~ N(0, 02,).

@ We can see that joint models are preferred to corresponding separate models.
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ex. AIDS - Joint model (Weibull)

Joint Model
e - shared
DataforSurviva Anaiysis
[ cicszipasezscsy
Suhal  Resporsel
Maodelfo Interesting Event
Survltime, death == 1)~ drug + patient)
Interesting Event
Survival Time
it Time
Varisble Selected
patient R
death
D2

®®

Make Interaction Variable.

Random Effects
patient

Censoring Indicator
death

Censoring Value
1

Model for Baseline Hazard

‘Welbullmode!

Joint Model

Data for Survival Analysis

Browse.. TS

Suival  Responsel

Model for Mean

ymonth +drug + (lpatient]

Model for Mean
Response Varisble

v

Varlable Selected
patient = wonth
o dng
(death
coa
lgonder
prevol

T
start
ston

O]

Make Interaction Variable

Random Effects
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ex. AIDS - Joint model summary

Coefficients

beta_h se_beh t_value p_value
XIntercept. 245846  0.06018 40.84876  0.00000
month -0.03346  0.00248  -13.51424  0.00000
drugddl 0.09479  0.08479 111793  0.26360

Xlintercept.l — -2.245%5  3.06538 -0.73268 046375

drugddl.1 0.33846  0.15018 2.25360  0.02422
Estimates
phi_h alpha_h rho_h

1 016770 077300 -1.08185
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ex. AIDS - Random effect inferences

Normal Probability Plot Histogram of Frailty Effects
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

@ In chapter 7, we analyzed the PBC data available in the R package JM (Rizopoulos,

2015).

@ We fit joint model for the logarithm of serum bilirubin (mg/dL) y; for the j-th visit

and the time to event t; of the i-th event.
o We consider year, sex, and drug as covariates for yj;.

o We also consider sex and drug for t;.

i

Logarithm of serum bilirubin in mg/dl |\
y

Competing event time T
2
A Type 1 event
(Dead)
Entry
~
20 | Type 2 event
2 (Transplanted)

Figure 9.3 Path diagram for the joint model of repeated measure and competing
event time on PBC data.

1
//ﬁ

Figure: Path diagram for the joint model for repeated measures and competing event time on

PBC data
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

id : 312 patients

serBilir : serum bilirubin (mg/dL)

y serBilir'/?

years : number of years between registration and the earlier of death, transplantion, or
study analysis time

status : censoring indicator. 2(transplanted), 1(dead), O(alive)

year : number of years between enrollment and this visit date

drug : 1(D-penicillamine), 0(placebo)

sex : gender of patients. 1(male), O(female)
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

Variable Description

ascites Yes or No

hepatomegaly  Yes or No

spiders Yes or No

edema No edema, edema no diuretics, edema despite diuretics
serChol serum cholesterol (mg/dL)
albumin albumin (mg/dL)

alkaline alkaline phosphatase in

SGOT SGOT (U/ml)

platelets platelets per cubic ml / 1000
prothrombin prothrombin time (sec)

histologic histologic stage of disease
status2 1(death), O(transplanted or alive)

509 /569



ex. Primary biliary cirrhosis continued - pbc(page260).csv

Joint Model

@ For yj;, consider a linear mixed model.
Vi = X8+ vi + &

where x]; are covariates, v; ~ N(0, o2) and e; ~ N(0, 02).

o For the time event t;, consider the cause-specific hazard frailty model for competing
risk.

o Given a shared log-frailty vi;, the conditional hazard function Ay for the i-th patient
that failed from cause k (k = 1,2) can be expressed as

Air(t|vi) = o1 (ti) exp(x3;01 + 71 vi)
Ai2(t|vi) = Xo2(ti) exp(x3;02 + Y2 vi)

where Aok(t) is an unspecified baseline hazard function for cause k, d is regression
parameters for cause k.
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

@ The estimates of shared parameters ;1 = 1.271 and 7> = 1.189 show a positive
associations between yj; and 2 events.

@ The visiting year effect for y;; is positively very significant.

@ The effect of drug is not significant for y; and for death event, but it is negatively
significant for trasplanted event.

@ The effect of sex is positively significant for y; and for death event, but it is not
significant for transplanted event.

o However, when we fit the competing risk model for t; removing response yj;, the
effect of drug is not significant for transplanted event.
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PBC - Joint model with competing risk
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ex. PBC - Joint model summary

Coefficients

X.Intercept.
year

drug

sex

drug.1
sex.d
drug.2

sex.2

Estimates
Vi

1 -141902

beta_h
0.59091
0.096%94
-0.12390
042211
-0.11518
0.68%01
-4.32714

0.29153

V2

0.18578

se_beh
0.09314
0.00430
0.12756
0.19974
0.21384
0.30015
0.69184

0.54504

rhol_h

1.27049

t_value
6.34469
22.56767
-0.97127
211336
-0.53866
2.29554
-6.25458

0.53489

rho2_h

1.18852

p_value
0.00000
0.00000
0.33142
0.03457
0.59012
0.02170
0.00000

0.59273
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ex. PBC - Random effect inferences

Normal Probability Plot Histogram of Frailty Effects
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H-likelihood construction

yij : the jth repeated response of i-th subject (i=1,...,q,j=1,...,n;)
T; : a single event time of i-th subject
C; : the corresponding censoring time

We observe t7 = min(T;, ;) and §; = I(T; < G).
Linear Mixed Model for y :

— T
Yi =Xib+vi+ e

where v; ~ N(0, @) and € ~ N(0, ¢) are independent.
Frailty Model for T :

Ai(t|vi) = Ao(t) exp(xg;82 + yvi)

where )\ is an unspecified baseline hazard function and + is a real-valued association
parameter that allows the magnitude of the association to be different between two
outcomes, y; and T;.
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H-likelihood construction

@ The h-likelihood becomes
h=> ly+Y b+
i i i

where

by = Li(Br, ¢ yig|vi)
1 1
= — 5 log(2m¢) — %(}’ij —my)?
Ui = boi(B2, Ao; t, 67| vi)
= di(log Mo(t) + m21) — No(t") exp(n2i)
Ui = L3i(a; vi)r
2

1 1
==3 log(2ma) — 5 Vi

® mj = x{;B1 + vi and m2i = x3,82 + v; are linear predictors.
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Iterative least squares equations

@ Following Breslow (1972), we define the baseline cumulative hazard function Ag to

be a step function with jumps Ao, = Xo(t(;)) at the observed event times t,).

where t,) is the r-th smallest distinect event time (r =1,---, D).

@ The second term Z;Zﬂ of h becomes

Zfz = Z d; log Aor + Z Oimai — Z Aor {Z exp(m,-)}

i€Ry

where d; is the number of events at t,) and R, = {i : t > t(,)} is the risk set at t).
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Iterative least squares equations

@ Following Ha et al. (2001), we use the profile h-likelihood h™ :

Wo=hl 5= byt Gty L
i i i

where
= Yl 5= Y dlogho + Y- Y
~ ~ d,
Aor = Aor(B2, V) = =—————
' > icr, &P(121)
are the solution of the estimating equations BA =0forr=1,...,D.

@ The penalized partial h-likelihood h, is given by

hp = Zélij + Z Oimpi — Z d, log {Zexp(nzi)} + Zfsf
i i r i

i€Ry
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Iterative least squares equations

@ The score equations for fixed and random effects (31, 52, v) given dispersion

parameters ¥ = (¢, a, )"

Oh,
9p1
Oh,
9P
Oh,
v

are

= 1Xf(y—/M)
]

— XJ(6 - fia)

= Iz -z ) - L
o] a

where H1 = Xlﬁl + Ziv = M1, ﬁz = exp (|0g//§o(t*) + 772) with N2 = Xzﬁz + 'ngv.

@ /i is nx g group indicator matrix, and Z> = h which denotes a g x g identity matrix.

° No(t) = Zr:t(,)gt Aor is the estimator of cumulatize baseline hazard.
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Iterative least squares equations

@ This leads to the iterative least squares (ILS; see Ha et al. (2017)) joint equations
for 8 = (B8], B;5,v")T, given by

XTWhXa 0

XlT Wi Z, Xir Wiw,
0 XIWaXa  XJ(vWh)Zo o = [ XTw,
ZIWiXy ZI(yWa)Xe ZTWZ+Q/ |, Z'w oo
hyp &k, &2¢
where Wy = W =1 5 Wa = ananT' Q=550 = ola

wi =y, wo = Wam + (5 1i2), and

Zl W1 O * W1 wa
Z= , = , and w =
’)/ZQ O Wz wo

Note here that ZTWZ = ZlT WiLZ: + 221'(,.}/2 W2)Zz and ZTw* = ZIT Wiws + ’yZTW2
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Fitting procedure

@ The fitting procedure consists of the following two steps.

(S1) Estimation of fixed and random effects 6 = (3], 85, vT)T via the ILS equations.
(S2) Estimation of dispersion parameters ¢ = (¢, ,y)" as follows.
Estimation of ¥

o We used the adjusted profile h-likelihood, given by

~

1 1
polls) = [y = 5 logdet { - H(p ) ||

where § = 5(1/}) are solutions of % = 0 for given %, and

%h,

H(hP7 "/’) = 78980"‘

is observed information matrix for 6.
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Fitting procedure

@ The estimating equations of ¢ are given by

apg( P) =0
oY
leading to the estimating equations
R SN s
o v=m)y—m) g 5o VIV
n— Ko q— K1

where ko = f¢tr{H_1gZ}, K1 = —« tr{ﬁ_l%}, and H = H(h,,,0)|9 o)

@ The estimate of « is also easily implemented via the Newton-Raphson method using
the first and second derivatives.

@ This approach can extended to a joint model with competing-risk data (Ha et al.,
2017).
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Chapter 10. Further Topics: Variable Selection

Penalized least-square methods

o Many classical subset selection methods, such as forward/backward selection or
best-subset selection, cannot be easily adapted to applications where the number of

variables is much greater than the sample size.

@ PLS methods is another way to perform variable selection. The general version of

the PLS is the penalized likelihood criterion:
Qx(B) = U(B) — pA(B),

where £(8) = >"7 | log f5(yi|3) is log-likelihood and px() is penalty function.
@ We can in general put variable selection of any GLM-based regression model in this

framework.
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Penalized least-square methods

o Consider the regression model
y=xBte i=1,n 1)

where 3 is a p X 1 vector of fixed unknown parameters and ¢;'s are i.i.d. with (0, ¢).

@ Variable selection procedure can be described as PLS estimation that minimizes
1 n d
A B) =5 le(y,- —x7B)" + _Zlmom)
i= Jj=

where py(-) is a penalty function controlling model complexity.
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Penalized least-square methods

o With the Li-penalty, the PLS becomes LASSO:

P
A(8) =5 Z —xTBP+ A 18,

=t
which automatically sets to zero those predictors whit small estimated OLS
coefficients, thus performing simultaneous estimation and variable selection.

@ LASSO has been criticized on the ground that it typically selects too many variables
to prevent over-shrinkage of the regression coefficients (Radchenko and James,
2008); otherwise, regression coefficients of selected variables are often over-shrunken.

@ To improve LASSO, various other penalties have been proposed: SCAD penalty for
oracle estimators (Fan and Li, 2001), adaptive LASSO (Zou, 2006), elastic net (Zou
and Hastie, 2005).
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Penalized least-square methods

o With the L,-penalty, the PLS becomes ridge regression:
1 -

_ 1 Tt a)2 2

Qu(B) =5 i =B+ A 1B
i=1 j=1

@ In this case, all variables are kept in the model but the resulting estimates are the

shrunken versions of the OLS estimates.

o Ridge regression often ahcieves good prediction performance, but it cannot produce

a parsimonious model.

@ The ridge estimator is the same as random-effect estimator where §; are i.i.d.

normal random effects.
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Random effect variable selection

o We describe a random effect model that generates a family of penalties, including

the normal type, LASSO type and a new unbounded penalty at the origin.

@ In regression model (1), suppose 3 are random effects; conditional on uj, we have
Biluj ~ N(0, u;6), (2

where 6 is a fixed dispersion parameter and u;'s are i.i.d. random variables.

@ In this random effect model, sparseness or selection is achieved in a transparent way,
since u; =~ 0 implies 5; ~ 0.

o Since Au; = (af)(u;j/a) for any a > 0, § and u; are not separately identifiable. Thus,

we constrain E(u;) =1 as in HGLMs, which imposes a constraint on random effect
. P A
estimates such that ijl bj/p=1.
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Random effect variable selection

@ Assume that u; 's are from the gamma distribution with a parameter w such that

1 w—1 _—uj/w
fw(Uj):(l/W)l/Wriu-l/ teulv,

(1/w)~
having E(u;) =1 and Var(u;) = w.
@ Model (2) can be re-written as §; = ,/7;e; with ¢; ~ N(0,1) and

log 7 = logf + v;

where v; = log u;, which defines a DHGLM together with model (1).
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Random effect variable selection

@ Then h-loglihood h = h1 + h;y is given by

hy = Zlogqu(yllﬂ) **Iog 2r¢) — Z(yl

i=1
p

ha = {log fy(B|u) + log £u(v})},

l0g fo(u5) = 5 {108(2m6) + log vy + 57/ (0w},

log fu(vj) = — log(w)/w — log I'(1/w) + vj/w — exp(v;) /w.
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Random effect variable selection

The outline of the estimation scheme using IWLS as follows:

@ For given (8, w, ¢,0) solving dh/Ou = 0 gives the random effect estimator
. . 1
by = () = Z{8Wﬂjz/9 +-w)PP+(2-w)]. (3)

@ For given @I, Lee and Oh (2014) proposed to update 3 based on the model (1) with
3 satisfying (2). This is a purely random effect model

Y=XB8+e

where e ~ N(0, X = diag{¢}) and 3 ~ N(0, D = diag{d;0}).

@ From the mixed model equation, we update 3 by solving
(XTX 4+ Wy)B = XTy (4)

where Wy = diag{\/d;} and A = ¢/0.
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Random effect variable selection

o It is clear that 3; = 0 when & = 0. If we allow threshold by setting small i to zero,
then the corresponding weight 1/i; in W) is undefined.

@ We could exclude the corresponding predictors from (4), but instead we employ a
perturbed random effect estimate &5 x = A(|Bk| + 6)/|pA(|B«|)| for a small positive
8 = 1078 Then the weight is always defined and the solution is nearly identical to
the original IWLS as long as ¢ is small.

@ In random effect models, we used ML or REML estimates for (w, ¢, 0) and
computed tuning paramter X as the ratio ¢/6. On the other hand, in variable
selection, it is common to estimate A by using K-fold cross validation since X is not

a model parameter in PLS procedure.
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Implied penalty functions

o Given (w, ¢, 0), the estimator of 3 is obtained by maximizing the profile h-loglihood
hp = (b1 + h2)lu=a,

where @I solves dh/du = 0.

@ Since h; is the classical loglihood, the procedure corresponds to a penalized

loglihood with implied penalty

pr(B) = —dhalu=a,

where @i; is computed in the first step of the IWLS.

o Specifically, for fixed w, taking only terms that involve 3; and &, the j-th term of
the penalty function is

2
: —2
o) = g+ 5 ioga 4 oy )

532 /569



Implied penalty functions

@ Thus the random effect model leads to a family of potentially unbounded penalty
functions px(8) indexed by w:
(1) w — 0: ridge penalty (- &; — 1 if w — 0)
(2) w = 2: LASSO penalty (- & = |B;]/ V)
(3) w > 2: penalty with infinite value and derivative at 0

@ As the concavity near the origin increases, the sparsity of local solutions increases,
and as the slope becomes flat, the amount of shrinkage lessens.

@ From the next figure, we can see that HL controls the sparsity and shrinkage

amount by choosing the values of w and A simultaneously.
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Implied penalty functions

p(B)

p(B)

p(B)

P(B)

-4 -2 0 2 4 -4 -2 0
B
Figure 11.1 Penalty function px(8) at different values of w, for A =1 (solid),
A = 1.5 (dashed) and X = 0.5 (dotted). In general, larger values of A are
associated with larger penalties, hence more shrinkage and more sparseness.
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Implied penalty functions

@ By controlling the amount of sparsity and shrinkage simultaneously, the HL has
much higher chances of selecting the correct models without losing prediction
accuracy than the other methods (Kwon et al., 2017).

o Ng et al. (2006) showed the consistency of all local solutions of the HL method,
which implies the uniqueness of HL solution under certain conditions

o Ng et al. (2017) showed that HL estimator achieves consistent estimation of number
of change points, their locations, and their sizes, while LASSO and SCAD may not.

@ Advantage of the HL method is to achieve asymptotic selection consistency without

losing prediction accuracy in finite sample.
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Scalar § case

o Consider the simplest case that 3 is the population mean and z is the sample mean.

Here we can illustrate various variable selection procedures.

@ The IWLS step (4) gives

A z
B = TF /8 (6)
and the corresponding PLS criterion is
1
A(B) = 5(2—5)2"‘%(5)' (7)

@ The next figure shows the penalized likelihood surfaces at different values of z.
Given X as z approaches zero (when z < 2), there is only one maximum at zero, so
in this case the estimate is zero and the corresponding predictor is not selected.
Otherwise, bimodality occurs.
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Scalar 3 case

z=01
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—log.profile.likelinod
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Figure 11.2 Implied penalized log-likelihood functions equal to —Qx(B) in
(11.9) at different values of z and fived A = 1.
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Scalar § case

@ Note that the implied penalized likelihood Qx () is not convex but the model can
be expressed hierarchically as (a) yi|3 is normal and (b) §;|u; is normal with (c)

gamma uj; all three models are convex.

@ Thus the IWLS algorithm overcomes the difficulties of a non-convex optimization by

solving three interlinked convex optimizations.

e Equalizing the score equations for 3 from (5) and from the PLS (6), we have
BL+N/) —z=0Qx/0B = —(z = B) + pa(B);
and get a useful general formula

a(B) = A3/pA(B), (8)

which allows us to obtain results for LASSO, SCAD or the so called adaptive LASSO
by using different random effect estimates & in the IWLS of (5).
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Scalar § case

@ Examples of the penalty derivatives for some methods are given in the next table.
Types  pA(B)
LASSO  Asign(S)
SCAD  Asign(3 ){ (18] < A) + @180 (1) > /\)}

HL AB/{w{(2/w — 1) + ffj}/4}
where r; = {862/ (wd) + (2/w — 1)2}1/2

Table. Derivative of penalty functions for some methods

@ For the LASSO, px(8) = A8, so & = |3|.
@ For the adaptive LASSO, px(8) = 2\|8|/|z|, so & = |B]|z|/2.

e For the SCAD, & = |8|/{I(|18] < \) + (a(Aa IIB”* 1(]B8] > A)} for some a > 2.
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Scalar g case

w=2 w= 30

4 2 0 2 4 -4 2 0 2 )
z z
Adaptive LASSO SCAD with a=4
<4
~ A
<2 o e
o
1
=« |
l
-4 2 0 2 )
z z

Figure 11.3 Different IWLS solutions (11.8) as a function of z at fived X = 1
(solid), A = 2 (dashed) and A = 0.5 (dotted). The formula for U is given by
(11.5) for w =2 and 30, and by (11.11) and (11.12) for the adaptive LASSO
and SCAD estimates, respectively.
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Structured variable selection

@ In regression problems, explanatory variables often possess a natural group structure.
o categorical factors are often represented by a group of indicator variables
o to capture flexible functional shapes, continuous factors can be represented by a linear
combination of basis functions such as splines or polynomials.

@ In these situations, the problem of selecting relevant variables involves selecting
groups rather than selecting individuals.
@ Depending on the situation, the individual variables in a group may or may not be
meaningful scientifically
o If they are not, we are typically not interested in selecting individual variables and the
interest is limited to group selection.
o However, if the individual variables are meaningful, then we would be interested in
selecting individual variables within each selected group; we refer to this as bi-level
selection. (Huang et al., 2012)
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Structured variable selection

@ Suppose that the explanatory variables can be divided into K groups and the

outcome y = (Y1, ,¥n)" has mean u = (p1, -, un)" that follows a GLM with
link function n; = h(u;), such that we have a linear predictor n = (11, ,7)7,
n=XB= X1+ -+ XxBk 9)

where X = (X1,--+ ,Xk) and 8 = (B1, -, Bk)" are collection of n x p, design
matrices and pi regression coefficients, respectively.
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Structured variable selection

@ For group selection, Lee et al. (2015) considered a random effect model

Bkj|UkNN(07Uk0)7 k=1,---,Kand j=1,---  px (]_0)
ux ~ gamma(wy), k=1,---,K (11)

where 0 and wy are regularization parameters that control the degree of shrinkage
and sparseness of the estimates.
o For a given 6, the sparsity among the groups increases as wy's get larger, while for
fixed wy's the shrinkage becomes smaller as 6 increases.
@ Group selection is achieved as follows.
o If iy =0, then Gy = 0 for all j.
o If i > 0, then Gy # 0 for all j.
@ This means that the model is limited to group-only selection, as it does not impose
sparsity within the selected groups.
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Structured variable selection

@ Bi-level selection can be done by extending the model (10) as follows:

Bij |t vig ~ N(0, ukvigh), k=1,---,Kandj=1,---,pc  (12)
ug ~ gamma(wy) (13)
vij ~ gamma(T). (14)

where uy is the random effect corresponding to the k—th group and vy; is the
random effect corresponding to the j—th variable in the k—th group.

@ Hence this model selects variables at both the group level and the individual variable
level within selected groups.

o If oy =0, then Bi; =0 forall j=1,...,p.
o If Uy > 0, then f4; = 0 when ¢ = 0.
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Interaction and hierarchy constraints

@ Interaction terms in regression models form a natural hierarchy with the main
effects, so their selection requires special consideration.

@ It is common practice that the presence of an interaction term requires both of the
corresponding main effects in the model. This may be called a strong hierarchy
constraint, while the weak version requires only one of the main effects to be present.

@ We can use a random effect model to impose sparse selection of interaction terms

under the hierarchy constraints.
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Interaction and hierarchy constraints

@ Consider a p-predictor GLM with both main and interaction terms.

P
Ni :,Bo +ZXUﬁj+ZX,'jX,'k5J'k, i = 1,...,[‘]7
j=1

j<k

which we write in matrix form as
n=Xp + Z6,

where n = (11,...,mn) is the vector of linear predictors, 8 = (B1,...,08p) and

0 = (d12,...,0p—1,p) are the vectors of the corresponding regression coefficients for
main and interaction terms, respectively. Similarly, X is the design matrix of the
intercept and linear terms for the main effects, and Z is that of the cross product
terms for the interactions.
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Interaction and hierarchy constraints

@ Lee et al. (2015) proposed the use of random effect model.

@ Under the strong hierarchy constraint,

Bilu ~ N(0, u;6),
Okj| Uk, uj, vig ~ N(O, ugujvi;0) for k > j

uj ~ gamma(wy) and v ~ gamma(wa).
@ Under the weak hierarchy constraint,

Bjluj ~ N(0, u;0),
Sij i, ujy vig ~ N(O, (uk + uj)viit)

u; ~ gamma(wy) and v ~ gamma(wz).
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Interaction and hierarchy constraints

(Byusg) (Byyuq) (Bauq) (Bypuq) (Byuq) (Bg,us)

(812ruquy) (613,uqus) (Brpuzug)  (Grzugtug)  (Syzugtuy) (873 +u3)

(@) (b)

Figure 10.2 A model with main effects and interaction terms under (a) strong
hierarchy and (b) weak hierarchy constraints.
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Functional marginality and general graph structure

@ For completeness, we describe here other statistical models in which the notion of
hierarchy applies, and show how to model them using the random effects approach.

@ Suppose we want to fit the second-order mixed polynomial model
n=Xpr+ -+ XpBp + X261 + X1 Xob12 - - - + thspp, (15)

where X X; denotes the component-wise product between the two column vectors.

@ To maintain the functional marginality rule, we consider a random effect model
Biluj ~ N(O, u;6),
Sjiluj, vij ~ N(0, ujv;6),
S| s uj, vig ~ N(O, ukujvig6),
u; ~ gamma(wy) and v ~ gamma(wz).
o This is analogous to the strong hierarchy in previous model, but now we include d;;.

It can be easily extended to general higher-order models.
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Functional marginality and general graph structure

@ Various hierarchical structures can be represented by a directed graph.

(Byyuq) (By,uq)

(52»“1"2

(Byuyuyuy) (Bs uquzugug) (Bsrugugug)  (Bsyu(uy + uz)us)

(@) (b)

Figure 10.3 The directed graph structure representing hierarchy of variables
under (a) strong hierarchy and (b) weak hierarchy constraints.
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Functional marginality and general graph structure

@ In Figure 10.3 (a) for strong hierarchy, Xs can be included if (X1, X2, X3) are included
in the model. This graph can be modeled by the following random effect model:

Bi|ur ~ N(0, u16),

Ba|uz, uz ~ N(0O, uyu20),

Bs|uz, us ~ N(0O, uyusb),

Baluy, uz, us ~ N(O, uruz2u46),
Bs|uz, uz, uz, us ~ N(0, uyupuzush),
uj ~ gamma(w) for j=1,...,5.

o For weak hierarchy, Xs can be included if the model includes, besides Xi, at least

one of X, and X3. This graph can be modeled by

Bs|u1, tn, uz, us ~ N(O, ur(uz + us)us8).
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Functional marginality and general graph structure

@ This illustrates how the random effect model can be adapted to describe various
hierarchical structures in the covariates.

@ The HL method can easily applied to produce sparse versions of classical
multivariate techniques, such as the principle component analysis, canonical
covariance analysis, partial-least squares for Gaussian and that for survival outcomes
(Lee et al., 2010, 2011a,b, 2013).

o Furthermore, it is straight forwards to apply HL method to various class of HGLM
models via penalized h-loglikelihood; general frailty models (Ha et al., 2014a) and
competing risks models (Ha et al., 2014b)
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o Disease progression of diabetes in Efron(2004)
o 442 diabetes patients
o 10 predictive variables: age, sex, bmi, bp and 6 types of serum measurements
o Response variable: a measure of disease progression
o Consider a quadratic model having p = 64 predictive variables
o 10 original terms
e 9 quadratic terms (except for binary variable)
e 10Co = 45 interaction terms

@ We compare three methods: LASSO, SCAD and HL (w = 30).

Method LASSO SCAD HL
Number of variables 15 12 14
CV error 2088.69 2082.85 2891.76
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LASSO SCAD HL

sex -5.43  -11.07 -10.86
bmi 23.89  25.14 23.63
map 12.04 15.16  15.17
hdl -9.00 -12.98 -12.52
ltg 2228 2349 2289
glu 0.89 2.93

age

age? 0.35 0.95 2.76

bmi? 1.29 0.06 2.13

glu? 2.25 2.31 3.51

age:sex 5.26 7.33 7.46
age:map 1.53 0.68 1.69
age:ltg 0.43 0.01 1.55
age:glu 0.58

sex:map 0.03 2.29
bmi:map 3.87 5.23 5.13
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@ The numbers of variables selected by the three methods are similar, varying from 10
to 15, though the HL method has the smallest cross-validated error (Kwon et al.,
2016).

o If we look at estimates of main effects, the LASSO estimators are shrunk the most

and the SCAD estimators the least.

@ We see that all methods include the age:sex interaction in their final model,
consistent with the known result that diabetes progression behaves differently in
women after menopause

@ As seen in Table 10.2, with an automatic variable selection method with large p, the
marginality rule will be easily violated. A systematic way of handling such a problem

is grouped model selection as we shall show.
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ex. Gene-gene interaction

@ As an illustration, we analyse gene-gene interaction in a cohort study called ULSAM
(Uppsala Longitudinal Study of Adult Men).

@ Ongoing population-based study of all available men born between 1920 to 1924 in
Uppsala County, Sweden.

@ Analyse a subset of n = 1179 subjects for which we have genetic data.
@ The primary outcome is body-mass index (BMI), a major risk factor for many

cardiovascular diseases.

o Based on several criteria, we selected 10 single-nucleotide polymorphisms (SNPs) as
the predictive variables. (Lee et al., 2015)
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ex. Gene-gene interaction

5
Figure 10.4 Results from various methods applied to ULSAM data. In each
graph, each node represents a SNP, the size of the main effect is represented

by the circle size and the interaction by the thickness of the line between two
nodes.
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ex. Gene-gene interaction

@ The ordinary least squares (iOLS) method estimates all the interaction terms and
connot recognize the linkage disequillibrium between SNPs 1, 2 and 5.

@ The largest interactions in iOLS are (1,6), (1,7), (5,7). In contrast, all the sparse
methods select (1,4) and (3,6) as the most interesting pairs.

o As expected, unconstrained methods (iLASSO and iHL) select interaction term
without main effects, which can lead to misleading conclusions.

@ The hierarchy constrained method (wHL and sHL) have comparable sparsity and
they both select only one of the linked SNPs 1, 2 and 5. If strong hierarchy is
desired, sHL method provideds a sensibly sparse solution in this case.
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Chapter 11. Further Topics : Multiple Testing

Single hypothesis testing

o Single hypothesis testing problem on the mean of Y ~ N(u,1).
Ho:p=po vs. Hi:p=m

@ The classical Neyman-Pearson likelihood ratio is

L= f(ylH)
f(y|Ho)

@ Let a discrete random effect be o = 0 if Hp is true and o = 1 if H; is true. Then the
h-likelihood is

f(y,0) = f(ylo)P(o)
@ Hence, the h-likelihood ratio is

fly,o=1) _ fly|H)Plo=1) _1-po

R 00=0) ~ FyIH)Po=0) ~

L
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Single hypothesis testing

o For the test depending on the value of L, py should be strictly between 0 and 1.
However, in single hypothesis testing, po is not estimable.

@ Both L and R give equivalent optimal tests, but the h-likelihood ratio R opens up a
way for testing multiple hypotheses.

@ The h-likelihood ratio can also be interpreted as a ratio of predictive probabilities.

r_fro=1) _ Plo=1y)f(y) _ Plo=1ly)
f(y,o=0) Plo=0ly)f(y) P(o=0ly)

@ We can show that the optimal test is determined by the ratio of predictive
probabilities R, equivalent to the h-likelihood ratio.
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Single hypothesis testing

@ With the loss function that depends on },
o(1-0)+A(1—-o0)d
we have the risk
E(o(1 —0)+ M1 —0)dly) = P(o=1ly)+ P(o =0|y)(A — R)d
o The optimal test §* is determined by the h-likelihood ratio,
> =1I(R>\)

@ In the single hypothesis testing, po may not estimable, (R = lfT””L may not be

calculated), so that need to define the optimal test without po.

o Define the optimal test as 6% = /(L > X\*)(= /(R > \)) where \* = 1A_"P°O, for some
0 < po < 1. And choose \* to satisfy P(6*" = 1|Hp) < av.
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Multiple testing

o Most literature on multiple testing has focused on the error control, not the power
of the test.
@ The h-likelihood gives the optimal test maximizing the power of the test.

@ Suppose that we have N null hypotheses Hi, ..., Hy to test simultaneously.

=0 6=1 Total
o=0 Voo Vo1(Type 1 error) No
o=1 | Vi (Type 2 error) Vi1 Ny
Total Mo My N

@ There are methods choosing the threshold of test.

- control the family wise error rate(FWER)
- control false discovery rate(FDR)
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Multiple testing

o Family wise error rate
The probability of at least one false positive.

FWER = P(Vo1 > 1)
o False discovery rate

The expected proportion of errors among rejected hypotheses.

_ Vo
—-r

Following Efron (2004), we use the marginal FDR

E(Vo1)

mFDR =
E(My)
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Multiple testing

@ Similar to single case, with the loss
Z O,‘(]. — 5,) + A(]. — o,-)5,-
the optimal rule 6* = {67, ..., 53} becomes

N =1I(Ri > \)

E(No)
N

@ In multiple testing case, po = is estimable, so that R; can be directly used.

o With the optimal rule §*, the marginal false discovery rate is given by

E(V01) o ZP(O; = 0,(;,/\ = 1)
E(M:) E(Z0M)

@ And the estimated mFDR is given by

mFDR()\) =

— Bo > P(Ri > A|Hui)
mFDRO) = 5 B
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Multiple testing

—

@ mFDR(X) can be controlled by mFDR()) at a specific level by varying A.

@ Parameters can be estimated by maximizing marginal likelihood. And if the MLE for
0 is consistent, the likelihood ratio test is asymptotically optimal.

o Random effect model for multiple testing Suppose that yjj; for the ith site of the
Jth individual in the control group and yjj» in the treatment group can be modeled
fori=1,2,....,N as

yiu = &iten
Yie = &+ witep

where &; is the site effect, w; is the random treatment effect and €, is the error
with E(ejm) = 0 and Var(ejm) = dim.
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Multiple testing

Assume that the random treatment effect w;s are independent with

E(wi|Hoi) 0 and Var(w;|Hoi) = o?
E(wi|Hiy) = p#0and Var(w|Hy) =1°

@ Then, for the difference in means d; = yi» — ¥i1, we have the following hierarchical

model:

Conditional on  w; and o;, E(di|wi, 0i) = w;

and Var(di|w;, 0;) = 9y
Conditional on  o; = 0, E(w;|Hoi) = 0 and Var(w;|Ho;) = o
Conditional on  o; = 1, E(wi|H1;) = p and Var(w;|Hy;) = 7°

where ©; = ¢j1/n + ¢in/na.
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Multiple testing

o Let v = (w, 0) be unobservables, and y be the set of all observations. The
h-likelihood is defined to be

L(v,0;y,v) = fo(y,v) = fa(y)Pa(vly)

@ Suppose that we are not interested in effect size w;, we can integrate them out. It
leads the model for d = (d, ..., dn)

Given o; = 0, E(d,'lHo,‘) =0 and Var(d;|H0;) = 1/],‘ -+ 0'2
Given o; = 1, E(d;|H1i) = u and Var(di|Hyi) = ¥i + 2
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Multiple testing

@ Then the h-likelihood is given by

L(o,0;d,0) = fy(d,0) = H L(o;)
where
Lloo=1) = P(or=1)fs(dilo; =1) = (1 — po)fa(di|Hir)
L(o;=0) = P(oi =0)fy(dilo; = 0) = pofa(di|Hoi)
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ex. Neuroimaging data

o PET data from the study of the Korean standard template.
@ The data consists of scans of 28 healthy males and 22 healthy females.

o Each image has N = 189, 201 voxels.

@ Previous methods have not identified any voxel in the brain to be significant and Lee
and Lee (2017) identified some significant voxels. So the method based on
h-likelihood ratio test is the most powerful one.

Figure 10.5 Multiple testing for the neuroimage data by using likelihood-ratio
testing. The gray-colored (black-colored) region are negatively (positively) ac-
tivated.
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