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Chapter 0. Basic Analysis
Materials : Download data-sets and manual
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Data Import
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Convert Data Type
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Convert Data Type
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Select Rows
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Merge Data Set
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Merge Data Set
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Descriptive Statistics
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Descriptive Statistics
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Descriptive Statistics

20 / 569



Descriptive Statistics
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One Sample T-Test
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One Sample T-Test
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One Sample T-Test
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One Sample T-Test
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Paired T-Test
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Paired T-Test
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Unpaired T-Test
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Unpaired T-Test
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Unpaired T-Test
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Unpaired T-Test
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Unpaired T-Test
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ANOVA
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Frequency Analysis
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Correlation Analysis
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Correlation Analysis
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Chapter 1. Regression
Linear Regression Model

Components of Linear Regression

the response Y

the linear predictor : µ = E(Y ) = Xβ

the distribution of y : Gaussian Distribution

Variance : Var(Y ) = φI

Gaussian Distribution

Log-likelihood

log L(µ, φ; y) = − (y − µ)2

2φ − 1
2 log (2πφ)
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Linear Regression Model

Normal Equation

(X T WX)β̂ = X T Wy where W = 1
φ

I
⇐⇒ (X T X)β̂ = X T y

β̂ = (X T X)−1X T y , Var
(
β̂
)

= (X T WX)−1 = φ(X T X)−1

Hat matrix H = X(X T X)−1X T

Leverage qi : i-th diagonal elements of H

Residual êi = yi − xi β̂

Studentized residual :
êi√

φ (1− qi )
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ex. Carstopping - carstopping.txt

The data give the speed of cars and the distances taken to stop. Note that the data
were recorded in the 1920s (Ezekiel,M.,1930).

StopDist : stopping distance (ft)
Speed : speed of car (mph)

Model 1 : StopDist = α + β Speed
Model 2 : StopDist = α + β Speed2
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ex. Carstopping - data management
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ex. Carstopping - Model 1 and Model 2
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ex. Carstopping - Model 1 and Model 2

Model summary for model 1
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ex. Carstopping - Model 1 and Model 2

Model checking plots for model 1
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ex. Carstopping - Model 1 and Model 2

Model summary for model 2
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ex. Carstopping - Model 1 and Model 2

Model checking plots for model 2
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ex. Carstopping - Model 1 and Model 2

Comparison of two models
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ex. Ozone - Ozone original.csv

Ozone data measured for 330 days in 1976. All measurements are in the area of
Upland, CA, east of Los Angeles (Breiman and Friedman, 1985).

TempSandburg : Sandburg Air Force Base temperature (◦C)

InvHeight : inversion base height (ft)

DaggettPressure : Daggett pressure gradient (mmhg)

PresHeight : Vandenburg 500 millibar height (m)

Visibility : visibility (miles)

Humidity : humidity (%)

Wind : wind speed (mph)

Day : day of the year

Ozone : upland ozone concentration (ppm)

Model : Ozone = β0 + β1 TempSandburg + β2 InvHeight +
β3 DaggettPressure + β4 PresHeight

59 / 569



ex. Ozone - Linear model
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ex. Ozone - Linear model

Model summary
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ex. Ozone - Linear model

Model checking plots
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ex. UC Berkeley Admission - UCBAdmission2.csv

Aggregate data on 4,526 applicants to graduate school at Berkeley for the six largest
departments in 1973 classified by admission and sex (Bickel et al., 1975).

Gender : Male, Female
Department : A, B, C, D, E, F
Admit : 1(Admit), 0(Reject)

Model 1 : Admit = β0 + β1 Gender
Model 2 : Admit = β0 + β1 Gender + β2 Department
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ex. UC Berkeley admission - Model 1 and Model 2
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ex. UC Berkeley admission - Model 1 and Model 2

Model summary for model 1
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ex. UC Berkeley admission - Model 1 and Model 2

Model summary for model 2
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ex. UC Berkeley admission - Model 1 and Model 2

Comparison of two models
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Chapter 2. GLMs

Five components of GLM

the response Y

the linear predictor η = Xβ

the distribution of y (exponential dispersion family)

the link function g(µ) = η with µ = E(Y )

a prior weight 1/φ

Likelihood Principle(Birnbaum, 1962)

The classical likelihood function contains all the information in the observed data
about the fixed parameter, provided that the assumed stochastic model is right.
Thus, if the model is correct, likelihood captures all the information in the data for
analysis.

Model checking is possible.

All necessary inferential tools can be derived from the likelihood.

In GLMs, the likelihood inference can proceed via IWLS equations. Also, the least
square methods in regression becomes the ML procedure in GLMs.
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GLMs

Exponential Dispersion Family

Log-likelihood

log L(θ, φ; y) = θT y − b(θ)
φ

+ c(y , φ)

b(θ) is cumulant generating function.

Mean : µ = E(Y ) = b′(θ)

Variance : Var(Y ) = φb′′(θ)

Distribution E(Y ) θ φ V (µ) Var(Y ) b(θ)
N(µ, σ2) µ µ σ2 1 σ2 θ2/2
Poi(µ) µ logµ 1 µ µ exp(θ)
Bin(n, p) µ = np log µ

n−µ 1 µ(n−µ)
n

µ(n−µ)
n n log(1 + exp(θ))

Gamma(α, β) µ = α
β

−1/µ φ = 1
α

µ2 φµ2 = α
β2 − log(−θ)
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IWLS for likelihood inference

1. Specify a starting value for β, say β(0) (k = 0)

2. Compute adjusted linear predictor

η(k+1) = Xβ(k) and µ(k+1) = g−1(η(k+1))

3. Compute adjusted dependent variable

si = η
(k+1)
i + ∂η

(k+1)
i

∂µ
(k+1)
i

(
Yi − µ(k+1)

i

)
4. Fit the weighted linear regression s = Xβ + ε with ε ∼

(
0,W (k+1)) where

W (k+1) = diag

((
∂η

(k+1)
i

∂µ
(k+1)
i

)2

Var(Yi )

)
.

5. Solve (X T W (k+1)X)β̂ = X T W (k+1)s.
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IWLS for likelihood inference

6. Put estimated coefficient as

β(k+1) =
(
X T W (k+1)X

)−1
X T W (k+1)s

7. Repeat step 2∼6 for k = 0, 1, 2, · · · until convergence.

8. After convergence, report β̂ and Var(β̂) = (XᵀWX)−1 where

W = diag

((
∂ηi

∂µi

)2

Var(Yi )

)
.

−→ IWLS is the extension of least squares method to GLMs!

Homework : You may derive IWLS from the likelihood.
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GLMs

Residual

Unscaled deviance : D = 2φ(`(y ; y)− `(µ; y)) =
∑

di

Unscaled deviance components : di

Distribution Deviance component di

Normal (yi − µ̂i )2

Poisson 2 [yi log(yi/µ̂i )− (yi − µ̂i )]
Binomial 2

[
yi log(yi/µ̂i )− (mi − yi ) log mi−yi

mi−µ̂i

]
Gamma 2 [− log(yi/µ̂i ) + (yi − µ̂i )/µ̂i ]

Standardized deviance residuals : rD,i = sign(yi − µ̂i )
√

di/φ

Pearson residuals : rP,i = (yi − µ̂i ) /
√
φV (µ̂i )

D∗ =
∑

r 2
D,i is the log likelihood ratio statistic.

P∗ =
∑

r 2
P,i is the Pearson chi-squared statistic.
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GLMs

Hat Values

GLMs have the hat matrix

H = X(XᵀWX)−1XᵀW

where W = diag
((

∂ηi
∂µi

)2 Var(Yi )
)

.

The diagonal elements of H are the hat values here denoted by qi .

Studentized residuals adjust for the hat values and are obtained as

ri√
1− qi

.

We can use the unscaled deviance to estimate the dispersion parameter

φ̂ =
∑

di∑
(1− qi )

= D
n − p
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ex. Crack growth - crackgrowth(page72).csv

Crack-growth data from experiment where crack length in inches are measured on a
compact tension steel test (CT test) operated in different laboratories (Hudak et al.,
1978).

y : increment of crack length (inch)
crack0 : initial value of crack length (inch)
cycle : number of cumulative loading cycles (106 cycle)
specimen : 21 metallic specimens

Model : η = logµ = α + β crack0
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ex. crackgrowth - gamma GLM
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ex. crackgrowth - gamma GLM

Model summary
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ex. crackgrowth - gamma GLM

Model checking plots
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ex. Train - train(page103).csv

Train-related accidents data in the UK between 1975 and 2003 (Agresti, 2007).

x : number of years since 1975

y : number of accidents between trains and road vehicles

t : distance of train travel (million kilometer)

logt : logarithm of t

Model : η = log(µ) = log(t) + α + βx
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ex. Train - Poisson GLM
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ex. Train - Poisson GLM

Model summary
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ex. Train - Poisson GLM

Model checking plots
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ex. Crabs - Crabs.csv

Data from a study of nesting horseshoe crabs, which investigated factors that affect
whether the female crab had any other males, called satellites, residing near her
(Jane Brockmann, 1996).

sat : number of satellites

y : indicator of whether a female crab has any satellites

weight : weight (kg)

width : shell width (cm)

color : 1(medium light), 2(medium), 3(medium dark), 4(dark)

spine : 1(both good), 2(one broken), 3(both broken)

When p=Prob(Y=1),

Model : η = log
( p

1−p

)
= α + β width
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ex. Crabs - logistic GLM
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ex. Crabs - logistic GLM

Model summary
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ex. Crabs - logistic GLM

Model checking plots
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ex. Snoring - snoring.csv

Data based on an epidemiological survey to investigate snoring as a possible risk
factor for heart disease (P.G. Norton and E.V. Dunn, 1985).

yes : number of people who have heart disease
no : number of people who don’t have heart disease
x : snoring level. 0(Never), 2(Occasional), 4(Nearly every night), 5(Every night)
n : yes + no

When p=Prob(Y=1),
Model : η = probit(p) = Φ−1(p) = α + βx
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ex. Snoring - probit model
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ex. Snoring - probit model

Model summary
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ex. Snoring - probit model

Model checking plots
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ex. Snoring - logistic model
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ex. Snoring - logistic model

Model summary
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ex. Snoring - comparison of two model
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ex. Tennis - Tennis.csv

Results of matches among five professional tennis players between January 2014 and
January 2018 (Agresti, 2019).
The fitted model provides a ranking of the players.
It also estimates the probabilities of win and of loss for matches between each pair
of players.

Πij : probability that player i is the victor when i and j play
Πji = 1− Πij (ties cannot occur)

Model : log
(

Πij
Πji

)
= log

(
Πij

1−Πij

)
= βi − βj

Loser
Winner Djokovic Federer Murray Nadal Wawrinka
Djokovic - 9 14 9 4
Federer 6 - 5 5 7
Murray 3 0 - 2 2
Nadal 2 1 4 - 4
Wawrinka 3 2 2 3 -
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ex. Tennis - Bradley-Terry model

94 / 569



ex. Tennis - Bradley-Terry model

Model summary
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ex. Tennis - Bradley-Terry model

Model checking plots
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ex. Tennis - Bradley-Terry model

Prediction
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Chapter 3. H-likelihood
Introduction

The h-likelihood method can fit rather complex models in an elegant manner.

In contrast, classical likelihood software may not be as flexible, whereas Bayesian
MCMC approaches allow fitting these models but at the expense of more
computation time and requires to assume priors for fixed parameters.

In this chapter we define the h-likelihood and provide insight to inference and
predictions based on the h-likelihood. We introduce the extended likelihood principle
underlying the h-likelihood framework and show how it is related both to classical
likelihood and Bayesian inference.
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Introduction

Five important points are made:

Inference about random effects can be made using the h-likelihood, whilst classical
likelihood cannot give any information about the random effects,

H-likelihood inference of random effects takes into account the uncertainty in
estimating the fixed effects, whereas empirical Bayes (EB) estimation of random
effects assumes known values of the fixed effects,

Model checking is possible for all parts of the model,

All necessary inferential tools can be derived from the h-likelihood, and

The h-likelihood can be used for predictions of unobserved random variables such as
future outcomes.
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Example for prediction of future outcome

Suppose that we have the number of epileptic seizures in an individual for five
weeks, y = (3, 2, 5, 0, 4).

Suppose also that these counts are i.i.d. from a Poisson distribution with mean θ.

Here, θ̂ = (3 + 2 + 5 + 0 + 4)/5 = 2.8 is the maximum likelihood estimator of θ,
which maximizing the Fisher likelihood fθ(y). The inferences about θ can be made
by using the likelihood.

Now we want to have a predictive probability function for the seizure counts for the
next week v .

Then, because fθ(v = i |y) = fθ(v = i), the plug-in technique gives the predictive
distribution for the seizure count v of the next week:

fθ̂(v = i |y) = fθ̂(v = i) = exp(−2.8)2.8i/i!
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Example for prediction of future outcome

Pearson (1920) pointed out the limitation of this Fisher likelihood using the plug-in
method because it cannot account for uncertainty in estimating θ.

This plug-in technique is a kind of empirical Bayes method. With Jeffreys’ prior,
π(θ) ∝ θ−1/2(1− θ)−1/2, the resulting marginal posterior

p(v |y) =
∫

fθ(v |y)π(θ)dθ

gives a predictive probability with higher probabilities for larger y . This Bayesian
procedure handles uncertainty caused by estimating θ.

However, it depends upon the choice of a prior and it might be difficult to justify
why the choice of Jeffreys’ prior is the right choice.
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Example for prediction of future outcome

Here the h-likelihood including v is proportional to

fθ(3, 2, 5, 0, 4, v) = exp(−6θ)θ3+2+5+0+4+v/(3!2!5!0!4!v !)

Now, θ̂(v) = (3 + 2 + 5 + 0 + 4 + v)/6 is the potential ML estimate if v is observed.

Then, the normalized profile likelihood fθ̂(v)(3, 2, 5, 0, 4, v) gives the predictive
probability p(v |y), almost identical to Pearson’s but without assuming a prior on θ.

This is a method to eliminate θ from the predictive probability fθ(v |y).

This example shows that standard methods for likelihood inferences can be used for
the prediction problem by using the h-likelihood without assuming a prior on θ.
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Example for prediction of future outcome
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Likelihood Inference for Random Effects

We consider extended statistical models that consist of three types of objects, data
y, parameter (fixed unknowns) θ and unobservables (random unknowns) v . Then
statistical inferences need to be made for both unknowns θ and v , based upon the
observed data y.

Consider a linear mixed model for i = 1, · · · ,m and j = 1, · · · , ni

yij = xijβ + vi + eij , (1)

where β is the vector of fixed effects and vi∼ N (0, λ) are i.i.d. random effects,
eij ∼ N (0, φ) is an i.i.d. random error.

In this model, there are two types of unknowns; fixed unknowns θ = (β,φ, λ) and
random unknowns v = (v1, · · · , vm)T .
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Likelihood Inference for Random Effects

The linear mixed model (1) may be written in matrix form as

y = Xβ + Zv + e. (2)

In the classical likelihood setting the model for the data generation process fθ(y) is
given by the density function of a multivariate normal distribution

N(Xβ, λZZT + φI)

with the corresponding marginal likelihood

L(β, λ, φ; y) = (2π|V |)−
1
2 exp{−1

2 (y − Xβ)T V−1(y − Xβ)}, (3)

where V = ZZTλ+ Iφ.

This marginal likelihood can be used to estimate and make inference about the fixed
parameters β, λ and φ. However, the random effect v is not included so that the
classical likelihood does not directly give inference about the random effects.
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Likelihood Inference for Random Effects

Lee and Nelder (1996) proposed the use of the hierarchical likelihood

H(θ, v ; y) = fθ(y |v)fθ(v) = fθ(v , y), (4)

where fθ(v , y) is the joint density of v and y .

It is related to the conditional distribution of v given y as

H(θ, v ; y) = fθ(v , y) = fθ(y)fθ(v |y). (5)

Bjørnstad introduced the extended likelihood principle where all information in the
observed data for parameters θ and unobservables v are in the extended likelihood,
such as the hierarchical likelihood.

Lee and Nelder (1996) found that the scale of v is important for meaningful
statistical inference; they called the extended likelihood in a particular scale the
hierarchical likelihood and its logarithm is referred to as the h-likelihood.
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Likelihood Inference for Random Effects

For the h-likelihood, there is a close connection both to classical frequentist
inference and Bayesian inference.

In the absence of random effects, the hierarchical likelihood is the same as the classical
likelihood, i.e. H = fθ(y).
In the absence of fixed parameters θ,

H(v ; y) = f (y)f (v |y). (6)

which is proportional to the posterior f (v |y) used for inference in Bayesian statistics
where f (v) is a prior.

However, in hierarchical models such as linear mixed models, v is random and f (v)
is part of the model. To make this distinction clear, we call f (v |y) the predictive
density (or predictive probability) for random effect v .

In this book, the conditional likelihood fθ(v |y) is called the predictive probability to
highlight its probability property ∫

fθ(v |y)dv = 1
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Likelihood Inference for Random Effects

Lee and Nelder (1996) proposed that the random effects could be estimated by
finding the mode of the joint density fθ(y , v).

Using the mode of H can simplifies the computations drastically compared to
MCMC. However, it requires an appropriate scale of v because the joint density will
depend upon the transformation of v .

For example, the mode of the joint likelihood is not invariant to transformation of v
and different conclusions will be drawn depending on the scale of v chosen when the
mode is used for inference about the random effects.

The novelty of Lee and Nelder’s method (1996) is to limit the possible joint
likelihoods to a given scale of v , resolving the invariance problem.
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Likelihood Inference for Random Effects

For inference about fixed parameters, we use the marginal likelihood derived from
fθ(y , v) by integrating out the random effects

fθ(y) =
∫

fθ(y , v)dv . (7)

This is a classical Fisher likelihood, so we can obtain the ML estimator for θ by
maximizing fθ(y).

For estimating variance components, Patterson and Thompson (1971) suggested a
REML approach to improve the estimation properties with reduced bias. REML for
linear models can be extended to GLMs through a more general specification as a
conditional likelihood fθ(y |β̂) where β̂ is the estimator for the mean parameters.
(Smyth and Verbyla, 1996; Lee and Nelder 2001).
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Likelihood Inference for Random Effects : Linear mixed models

Recall the linear mixed model,

y = Xβ + Zv + e

with v ∼ N(0, λI) and e ∼ N(0, φI).
The marginal likelihood is given by

log(fθ(y)) = log
∫

H(θ, v ; y)dv = −
1
2

log(det(2πV ))−
1
2

(y − Xβ)T V−1(y − Xβ)

where V = ZZTλ+ Iφ.

From the marginal likelihood, we can obtain the ML estimator
β̂ = (XT V−1X)−1XT V−1y .
REML estimator equations for variance components is obtained from

log(fθ(y |β̂)) =−
1
2

log(det(2πV ))−
1
2

(y − Xβ̂)T V−1(y − Xβ̂)

−
1
2

log(det(XT V−1X))
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Likelihood Inference for Random Effects : Linear mixed models

The h-likelihood given by

log(fθ(y , v)) = log(fθ(y |v)) + log(fθ(v))

=− n
2 log(2πφ)− 1

2φ (y − Xβ − Zv)T (y − Xβ − Zv)

− m
2 log(2πλ)− vT v

2λ

where n is the number of observations and m is the length of v .

The joint maximization for β and v gives Henderson’s mixed model equation(
1
φ

XT X 1
φ

XT Z
1
φ

ZT X 1
φ

ZT Z + I 1
λ

)(
β̂

v̂

)
=

(
1
φ

XT y
1
φ

ZT y

)
,

which gives the BLUP for v and the ML estimator for β.
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Deriving Sample Variance from the REML Likelihood

Suppose y1, y2, ..., yn are i.i.d. observation from N(µ, σ2) where both parameters are
unknown.

The ML estimator for µ is the sample mean µ̂ = 1
n
∑n

i=1 yi ∼ N(µ, σ2/n), whereas
direct maximization of logL gives the biased estimator σ̂2 = 1

n
∑

(yi − ȳ)2.

So we consider the REML likelihood

f (y |µ̂) = f (y)
f (µ̂) =

(
1√

2πσ2

)n
exp(− 1

2σ2

∑n
i=1(yi − µ)2)

1√
2π(σ2/n)

exp(− 1
2(σ2/n)

( 1
n
∑n

i=1 yi − µ
)2)

= 1√
n

(
1√

2πσ2

)n−1

exp

(
− 1

2σ2

[(
n∑

i=1

(yi − µ)2

)
− 1

n

(
n∑

i=1

yi − nµ

)2])

= 1√
n

(
1√

2πσ2

)n−1

exp

(
− 1

2σ2

[
n∑

i=1

(yi − ȳ)2

])
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Deriving Sample Variance from the REML Likelihood

Ignoring constant terms, the REML log-likelihood becomes

logLREML = −n − 1
2 log(σ2)− 1

2σ2

[
n∑

i=1

(yi − ȳ)2

]

By maximizing logLREML, we obtain the REML estimator σ̂2 = 1
n−1
∑

(yi − ȳ)2.

Hence we can see that the REML estimator adjusts for the degrees of freedom.

The two estimators will be similar for large n, however, when the number of mean
parameters (i.e. the number of parameters included in the mean part of the model)
grows with sample size, the two estimators can be very different.
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Extended Likelihood Principle

Birnbaum (1962) proved that the classical likelihood function contains all the
information in the observed data about the fixed parameter.

Bjørnstad (1996) extended this concept and showed that all the information in the
data y for parameters θ and unobservables v is in the extended likelihood.

This means that inference about fixed parameters and unobservables, using the
information only in the data, requires the extended likelihood function and nothing
else. However, these likelihood principles do not show how the information in the
data can be retrieved from the likelihood.
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Extended Likelihood Principle

In the absence of v , the extended likelihood becomes the marginal likelihood. Fisher
advocated the use of ML estimation and established the underlying theory.

In the absence of θ, we see that the extended likelihood gives Bayesian posterior and
its use has been advocated by Bayesian statisticians.

This gives an insight on how to make inferences in at least these two extreme cases,
so that we may develop a procedure which gives identical inferences to that using
the marginal likelihood for θ and that exploiting the property of the predictive
probability (posterior) for v in these two extreme cases.

In the context of HGLMs, Lee and Nelder (1996,2005) advocated the use of the
h-likelihood and presented how information in the data for unobservables and
parameters can be retrieved from it under the extended likelihood framework for all
three types of objects (θ, v and y).
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Extended Likelihood Principle

Similarly as for classical likelihood inference, we have a model for the data
generation process and a corresponding likelihood.
Stochastic Model:

Generate an instance of the random quantities v from a probability function fθ(v).
With v fixed, generate an instance of the data y from a probability function fθ(y|v).
The combined stochastic model is given by the product of fθ(v)fθ(y|v).

Statistical Inference:
Given y, we make inferences about θ by using the marginal likelihood L(θ; y) ≡ fθ(y).
Given θ, we make inferences about v by using the conditional likelihood

L(θ, v ; v |y) ≡ fθ(v |y). (8)

The extended likelihood for unknowns (v , θ) is given by

L(θ, v ; v , y) = L(θ; y)L(θ, v ; v |y), (9)

where

L(θ, v ; v , y) ≡ fθ(v ,y),
L(θ; y)L(θ, v ; v |y) ≡ fθ(y)fθ(v |y).
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Extended Likelihood Principle

The connection between these two processes is given by

fθ(y)fθ(v |y) ≡ L(θ, v ; v , y) ≡ fθ(v , y) = fθ(v)fθ(y|v). (10)

In the extended likelihood framework, v appears in stochastic model as random
instances, but it appears in statistical inference as unknowns.

From (9), we see that the extended likelihood is the product of two likelihoods, the
Fisher likelihood fθ(y) and the conditional likelihood fθ(v |y).

In likelihood theory the product of two likelihoods is a way of gathering information
from the two independent source of data (Chapter 1).

This is straightforward to note the close connection between the Fisher likelihood
and the h-likelihood, because it uses the Fisher likelihood for inferences about θ.
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Definition of the h-likelihood

For continuous v , Lee and Nelder (1996) proposed the use of the hierarchical
likelihood, an extended likelihood limited to a pre-defined scale of v .

Suppose we have two models for the random effects in a linear predictor as

η1 = Xβ + v and η2 = Xβ + exp(v).

Then we have two alternative extended likelihoods based on two different scales of
random effects:

L1(θ, v ; y , v) = fθ(y |η1)fθ(v) and L2(θ, v ; y , v) = fθ(y |η2)fθ(v). (11)

The modes of these two likelihoods differ and the question is which scale of random
effects to use for statistical inferences.
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Definition of the h-likelihood

We define the strong canonical scale of v such that the random effects v carry no
information about the fixed effects θ as

exp{`(θ1, v̂(θ1); y , v)}
exp{`(θ2, v̂(θ2); y , v)} = fθ1 (y)

fθ2 (y)

where θ1 and θ2 are two sets of θ values and v̂(θ1) and v̂(θ2) are the modes of
`(θ1, v ; y , v) and `(θ2, v ; y , v), respectively. (Lee, Nelder and Pawitan, 2017).

The h-likelihood is defined as the extended likelihood having v on a canonical scale.
This means that the marginal likelihood gives the same mode estimators about fixed
effects as the h-likelihood, so that there is no conflict between classical likelihood
inference and h-likelihood inference.

For example, in linear mixed models, v is on a canonical scale to β which implies
that joint maximization of h with respect to β and v gives the MLE for β.

In HGLMs, the h-likelihood is defined under a weak canonical scale where the
random effects combine additively with the fixed effects in a linear predictor.
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Definition of the h-likelihood

From the linear predictor η1 above, we see that L1(θ, v |y , v) is the h-likelihood,
which gives a consistent inference framework (Lee, Nelder and Pawitan, 2017)

The likelihood L1(θ, v ; y , v) = fθ(y |η1)fθ(v) is called a hierarchical likelihood, as the
random effects enter linearly in the linear predictor.

An important difference between transforming fixed versus random effects is that a
transformation of random effects requires the need to multiply the density function
for the random effects with a Jacobian.

In that sense, when v is discrete, there is no Jacobian involved so that all extended
likelihoods are the h-likelihood (Lee and Bjørnstad, 2013).
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Laplace approximation for the integrals

For the linear mixed model both the marginal likelihood and REML likelihood are
straight forward to derive, but for most other distributions the integral for the
marginal likelihood has no analytical form.

Numerical integration is infeasible if the number of integrands is large and MCMC
algorithms are often too slow. As an alternative, we use Laplace approximation in
h-likelihood approach.

The (1st-order) Laplace approximation for some integral
∫

exp[f (x)]dx is∫
exp[f (x)]dx ≈

{∣∣∣∣− 1
2π

∂2f (x)
∂x2

∣∣∣∣− 1
2

exp[f (x)]

}∣∣∣∣∣
x=x0

where x0 is a global maximum of f (x).
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Laplace approximation for the integrals

For the marginal likelihood, the Laplace approximation around the fitted random
effects is∫

fθ(y , v)dv =
∫

exp(log(fθ(y , v)))dv ≈


∣∣∣∣∣− ∂

2 log(fθ(y,v))
∂v2

2π

∣∣∣∣∣
− 1

2

fθ(y , v)


∣∣∣∣∣∣
v=v̂

where v̂ is obtained from the mode of fθ(y , v).

Applying a Laplace approximation to eliminate random effects together with a
quadratic approximation around β̂ on the REML likelihood fθ(y |β̂) to eliminate fixed
effects, we get

fθ(y |β̂) ≈ ... ≈

{∣∣∣∣ I(β, v)
2π

∣∣∣∣− 1
2

fθ(y , v)

}∣∣∣∣∣
β=β̂,v=v̂

where I(β, v) = −

(
∂2h
∂β2

∂2h
∂β∂v

∂2h
∂v∂β

∂2h
∂v2

)
with h ≡ log(fθ(y , v)).
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Adjusted profile h-likelihood

To this end, Laplace approximation for the log-marginal likelihood is specified as an
adjusted profile h-likelihood (APHL)

pv (h) = [h − 1
2 log(|I(v)|/2π)]|v=v̂ (12)

where I(v) is the information matrix for the random effects, and v̂ is the maximum
h-likelihood estimator of the random effects using h as objective function.

The approximation for the log-REML likelihood log fθ(y |β̂) can also be expressed as
an APHL:

pβ,v (h) = [h − 1
2 log(|I(β, v)|/2π)]|β=β̂,v=v̂ (13)

where I(β, v) is the information matrix for the fixed and random effects.

The estimates of fixed effects and dispersion parameters are computed by
maximizing these two likelihoods.
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Street magician

Here an example is presented to illustrate the fundamental idea of likelihood inference
and how it may differ from Bayesian inference.

A street magician has a small bag with a number of dice. There are two types of
dice in the bag; white and blue. The white are numbered 1 to 6, while the blue have
three sides with 1 and three sides with 2.
The magician draws a dice at random from the bag without showing it to you and
rolls the dice, then he claims that the number is 2.

(a) Which type of dice would you guess he has rolled, a white or a blue?
(b) The magician lets you bet on the color of the dice. Which odds would you accept?
(c) Now the magician informed that there are 20 white dices and 10 blue dices in the
bag. What is your guess on the color of dice, which he rolled?

124 / 569



Street magician

Solution of (a).

The likelihood for a white dice is 1/6 and for a blue dice is 1/2. Therefore, as a
likelihoodist, the maximum likelihood guess is that the dice is blue.

Let Y be the number of dice and let C be a colour of dice and c be a realized value
of the colour of dice. Then, the likelihood ratio is

P(Y = 2|C = blue)
P(Y = 2|C = white) = 1/2

1/6 = 3.
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Street magician

Solution of (b).

To be able to make a probability statement we need to know the distribution of the
two types of dice in the bag. This is unknown however, which means that for a
likelihoodist the odds cannot be computed.

A Bayesian would guess the distribution and thereby compute the odds

P(Y = 2|C = blue)π(C = blue)
P(Y = 2|C = white)π(C = white) = 3 π(C = blue)

π(C = white) = P(C = blue|Y = 2)
P(C = white|Y = 2) .

Controversy is how to determine π(C = blue) and π(C = white).
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Street magician

Solution of (c).

The problem can be solved using a probabilistic argument, but here we also show
that both a classical likelihood ratio and the ratio of extended likelihoods can be
used to draw the same conclusion.

Let c be a realized value of the colour of dice such that

L(c = blue) = P(C = blue) = 1/3 and L(c = white) = P(C = white) = 2/3.

Then, the ratio of extended likelihood is

L(c = blue,Y = 2)
L(c = white,Y = 2) = P(Y = 2|c = blue)L(c = blue)

P(Y = 2|c = white)L(c = white)

= 1/2× 1/3
1/6× 2/3 = 3

2 .

Thus, the maximum extended likelihood guess is that the dice is blue.
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Street magician

Furthermore, we can compute the conditional likelihood

L(c = blue|Y = 2) = L(c = blue,Y = 2)
L(Y = 2)

= P(Y = 2|c = blue)L(c = blue)
P(Y = 2|c = blue)L(c = blue) + P(Y = 2|c = white)L(c = white)

= P(Y = 2|c = blue)
P(Y = 2|c = blue) + P(Y = 2|c = white)L(c = white)/L(c = blue)

= 1/2× 1/3
1/2× 1/3 + 1/6× 2/3 = 3

5

and

L(c = white|Y = 2) = 2
5 .

We call L(c = white|Y = 2) the predictive probability.
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Street magician

Note that the conditional likelihood L(c = blue|Y = 2) depends upon the likelihood
ratio L(c = white)/L(c = blue), so that it is invariant with respect to the
transformation of data and parametrization.

Furthermore,

L(c = blue,Y = 2)
L(c = white,Y = 2) = L(c = blue|Y = 2)

L(c = white|Y = 2) = 3
2 ,

i.e. the mode of the conditional likelihood L(c|Y = 2) is the same as the mode of
the extended likelihood L(c,Y = 2).

In (c) we have an information on P(C) (part of the model), while in (b) no
information is available on P(C), so that we need a guess π(C).
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H-likelihood and empirical Bayes

Inference on random effects have important practical use in predictions. A typical
example is for instance if there are repeated observations on patients’ hospital visits
and the life time of these patients are to be predicted. This would require a survival
analysis including random effects for patients and the uncertainty in the predictions
will include the uncertainty of the fitted random effects.

When θ is known, we can make inferences about v using fθ(v |y). However, θ is
unknown, so that we may make inferences using fθ̂(v |y) with θ̂ being the ML
estimator. This is the so-called EB approach, which gives consistent estimation for
predictive probability because θ̂ is consistent.
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H-likelihood and empirical Bayes

However, in finite samples this approach often has a poor inferential performance
because it cannot account for uncertainty, caused by estimating θ; especially when
the number of observations is low and the number of parameters in θ is large.

Such an uncertainty about θ̂ is included in fθ(y), and can be used for inference on
random effects (Lee and Nelder, 1996, 2001).

Thus, an important question is how to eliminate the nuisance parameter θ from the
predictive probability fθ(v |y), using the information on θ in the likelihood fθ(y).

Next slide illustrates the difference using a linear mixed model as an example.
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H-likelihood and empirical Bayes

For a linear mixed model
y = Xβ + Zv + e

v ∼ N(0, λI)

e ∼ N(0, φI)

the h-likelihood is

log(fθ(y , v)) = log(fθ(y |v)) + log(fθ(v))

=− n
2 log(2πφ)− 1

2φ (y − Xβ − Zv)T (y − Xβ − Zv)

− m
2 log(2πλ)− vT v

2λ

where n is the number of observations and m is the length of v .
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H-likelihood and empirical Bayes

In a linear mixed model, estimates of both β and v can be computed by maximizing
the h-likelihood.
The score equations ∂h

∂β
= 0 and ∂h

∂v = 0 give Henderson’s mixed model equations:( 1
φ

XT X 1
φ

XT Z
1
φ

ZT X 1
φ

ZT Z + I 1
λ

)(
β

v

)
=
( 1

φ
XT y

1
φ

ZT y

)
and the information matrix (computed from the second derivatives) is( 1

φ
XT X 1

φ
XT Z

1
φ

ZT X 1
φ

ZT Z + I 1
λ

)
.

The above equation is fitting algorithm of regression model(
y
0

)
=
(

X Z
0 I

)(
β

v

)
+
(

e1
e2

)
where e1 ∼ N(0, φI) and e2 ∼ N(0, λI). This is called data augmentation method.
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H-likelihood and empirical Bayes

This is different from an EB approach fθ̂(v |y) where the information matrix(
1
φ

ZT Z + I 1
λ

)
would typically be used for inference on the random effects ignoring the uncertainty
in the estimates of β̂.

A more thorough exposition is found in Section 5.4 of Lee, Nelder and Pawitan
(2017) showing that the h-likelihood gives correct inference.
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Prediction of random effects

Because the Fisher likelihood fθ(y) does not involve v , the other component, the
predictive probability, fθ(v |y) carries all the information in the data about the
unobservables.

Thus, the prediction of random effects can be made via the EB method using the
estimated predictive probability (or posterior)

p(v |y) = fθ̂(v |y) = π(v |y , θ̂),

where θ̂ is the usual ML estimator (Carlin and Louis, 2000).

However, using fθ̂(v |y) to make inferences about v is naive and Bjørnstad (1990)
has shown how badly it performs in measuring the true uncertainty in estimating v .
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Prediction of random effects

Note that maximization of the h-likelihood

h = log fθ(y |v) + log fθ(v) = log fθ(v |y) + log fθ(y)

yields EB-mode estimators for v , without computing fθ(v |y) = fθ(y , v)/fθ(y).

However, the Hessian matrix (i.e. matrix of second derivatives) based upon fθ(v |y)
gives a naive variance estimate for the prediction v̂ because it does not properly
account for the uncertainty caused by estimating θ, that is in fθ(y).

The h-likelihood considers both components and give proper estimators for random
effects and their variance estimators. However, the estimation of the first two
moments are not enough for accurate inferences of random effects if it is not normal.
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Prediction of random effects

The previous example shows that v̂ is neither a consistent estimator of v nor follows
the asymptotic normal distribution. Thus, interval estimations of random effects
differ from those of fixed effects.

Note that the predictive probability fθ̂(v |y) gives an asymptotically correct inference.
Thus, it is necessary to have a finite sample adjustment to account for information
loss caused by estimating θ. This can be generally done.

Lee and Kim (2016) showed that

p(v |y) = Eθ̂(fθ̂(v |y)) ≡
∫

ft (v |y)f (θ̂ = t)dt =
∫

ft (v |y)c(θ = t)dt,

where c(θ) is the confidence density in Chapter 1 of Lee, Nelder and Pawitan (2017).
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Prediction of random effects

Because the bootstrap distribution gives an estimate of confidence density, we can
have the bootstrap method to get the predictive probability

p(v |y) ≡ 1
B

B∑
j=1

fθ∗j (v |y),

where θ∗1 , . . . , θ∗B are the bootstrap replicates of θ̂.

In complex models it may not be easy to design the bootstrap scheme, so that it is
convenient to generate the bootstrap replicates of θ̂ from the asymptotic normal
distribution of θ̂ or the normalized likelihood.

Via a simulation studies, Lee and Kim (2016) demonstrate that bootstrap methods
provide excellent prediction intervals for future random effects, including the
prediction of future outcomes in the front.
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ex. Epilepsy - epilepsy(page66).csv

Longitudinal data from a clinical trial of 59 epileptics (Thall and Vail, 1990)

y : seizure counts during 2-week periods before each of four visits to the clinic
T : 1(new drug), 0(placebo)
B : logarithm of the average number of epileptic seizures recorded in the 8-week period

preceding the trial
A : logarithm of age
V : number of clinic visit(a linear trend, coded -3,-1,1,3)
patient : 59 patients
id : 236 data (= 59 patients × 4 clinic visits)
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ex. Epilepsy - epilepsy(page66).csv

Model 1 : Poisson GLM
logµij = β0 + βBi xB + βTi xT + βAi xA + βVj xV + βBi Ti xBT

Model 2 : Poisson - normal HGLM (GLMM)

Model 3 : Negative binomial - normal HGLM

Model 4 : Negative binomial - gamma HGLM

Model 5 : Over-dispersed Poisson GLM

Model 6 : Over-dispersed Poisson - normal HGLM

Model cAIC rAIC
Poisson GLM 1647.9 1664.7

Poisson - normal HGLM 1272.7 1350.5
NB - normal HGLM 1201.1 1310.5
NB - gamma HGLM 1163.9 1274.8

Over-dispersed Poisson GLM 1321.9 1332.8
Over-dispersed Poisson - normal HGLM 1219.4 1320.9
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ex. Epilepsy - Poisson GLM

141 / 569



ex. Epilepsy - Poisson GLM

Model summary
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ex. Epilepsy - Poisson GLM

Model checking plots
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ex. Epilepsy - NB-normal HGLM
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ex. Epilepsy - NB-normal HGLM

Model summary
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ex. Epilepsy - NB-normal HGLM

Model checking plots
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ex. Epilepsy - NB-normal HGLM

Model checking plots for random effects
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ex. Epilepsy - NB-gamma HGLM
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ex. Epilepsy - NB-gamma HGLM

Model summary
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ex. Epilepsy - NB-gamma HGLM

Model checking plots
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ex. Epilepsy - NB-gamma HGLM

Model checking plots for random effects
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Chapter 4. HGLMs: algorithm
Introduction

HGLMs extend GLMs by allowing random effects in the linear predictor.

HGLMs also allow regression models for the residual variance and the variance for
random effects.

Lee, Nelder and Pawitan (2017) and Ha, Jeong and Lee (2017) described both the
h-likelihood method and IWLS algorithm with related theories.

In this chapter, we show how HGLMs can be fitted using interconnected and
augmented GLMs.
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Joint linear model for mean and dispersion

Consider a linear model
y = Xβ + e

with e ∼ N(0,Φ) where Φ = diag(φi ).

The ML estimator for β is β̂ = (XT Φ−1X)−1XT Φ−1y and var(β̂) = (XT Φ−1X)−1.

Now suppose that we have a regression model for the dispersion φi

g(φi ) = Giγ

where g(·) is a link function and Gi is the ith row in a design matrix G.

The ML estimate of the regression coefficient of the dispersion γ can be computed
by using êi

2 as response in a gamma GLM with mean φi .

The REML estimate can also be computed by using êi
2/(1− qi ) as response in a

gamma GLM having a prior weight (1− qi )/2 where qi is the ith diagonal element
in the hat matrix H = X(XT Φ−1X)−1XT Φ−1.
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Joint GLMs for mean and dispersion

Suppose y follows the GLM class of model η = Xβ with E(yi ) = µi ,
var(yi ) = φi V (µi ) and the dispersion φi follows the regression model g(φi ) = Giγ

where g(·) is a link function and Gi is the ith row in a design matrix.

Given φi , the ML estimator β̂ can be obtained by using an IWLS algorithm for GLM
model with prior weight 1/φi . (full algorithm is described in chapter 2)

β̂ = (XT W X)−1XT W s, var(β̂) = (XT W X)−1

Given β, the ML estimate for the regression coefficient of the dispersion model γ can
be computed by using the deviance di as response in a Gamma GLM with mean φi .

The REML estimate can be computed by using di/(1− qi ) as response in a gamma
GLM having a prior weight (1− qi )/2 where qi is the ith diagonal element in the hat
matrix H = X(XT W X)−1XT W .
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Linear mixed model

Consider the linear mixed model

y = Xβ + Zv + e

The model can be re-written as an augmented linear model

ya = Xaδ + ea

where ya =
(

y
0

)
, Xa =

(
X Z
0 Im

)
, δ =

(
β

v

)
, ea =

(
e
−v

)
.

The variance-covariance matrix of the augmented residual vector is given by

var(ea) ≡W−1 =
(
φIn 0
0 λIm

)
Data augmentation method can be used to fit random effects v .

155 / 569



Linear mixed model

The estimates from weighted least squares are given by

XT
a W Xaδ̂ = XT

a W ya

which is identical to Hendorsn’s mixed model equations.

So we can extend the estimation method for joint GLMs to joint GLMs including
random effects by augmenting the response vector.

The weight matrix W may then be updated using the estimated variance
components and the algorithm iterates until convergence.

Lee and Nelder (2001) showed that the augmented linear model can be extended to
fit the HGLM class of models.
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HGLM class of models

HGLM has two random components: a response y and unobserved random effect v ,
such that y |v follows a GLM distribution, namely normal, binomial, Poisson, or
gamma.

The expectation of the conditional model y |v is

E(y |u) = µ

g(µ) = Xβ + Zv

v = r(u)

where g(·) is a link function, X and Z are design matrices and β is a fixed effect.

The distribution of u is one of the conjugate distributions of GLM family: normal,
beta, gamma, or inverse-gamma.

The random effect v is given on an appropriate (weak canonical) scale through the
link function r(·) tranforming u to guarantee correct model estimator.
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IWLS algorithm for HGLMs

Consider the heteroscedastic linear mixed model

y = Xβ + Zv + e

with independent and heteroscedastic random effects vi ∼ N(0, λi ) and residuals
ei ∼ N(0, φi ).

Now we can allow GLMs for the dispersion (residual variance) and random effect
variance

g1(φi ) = G1iγ1

g2(λi ) = G2iγ2

By taking log link for these variance components, we avoid negative estimates for
variance components.

Data augmentation method is used to fit the model.
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IWLS algorithm for HGLMs

The REML estimates for γ1 can be obtained by applying a gamma GLM to the
response êi

2/(1− qi ) with weights (1− qi )/2 for i = 1, 2, ..., n

Those for γ2 are computed by applying a gamma GLM to the response v̂i
2/(1− qi )

for i = n + 1, n + 2, ..., n + m

The hat value qi are obtained from the hat matrix of the augmented model.
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IWLS algorithm for HGLMs

Now we consider a HGLM such that
y |v follows a GLM distribution with η = Xβ + Zv .
u follows any conjugate distribution of GLM family with g1(φi ) = G1iγ1 and
g2(λi ) = G2iγ2.

Then the REML estimates for γ1 can be obtained by applying a gamma GLM to the
response di/(1− qi ) with weights (1− qi )/2 where di is the deviance from y |v GLM
for i = 1, · · · , n.

Those for γ2 are computed by applying a gamma GLM to the response di/(1− qi )
where di is the deviance from v GLM for i = n + 1, · · · , n + m.

We allow various GLMs to y and ψ in the augmented response
(

y
ψ

)
to fit random

effect model.

We use inter-connected JGLM fit for mean and dispersion of φ and λ.
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ex. Epilepsy continued

Review : Poisson GLM

Model : logµij = β0 + βBi xB + βTi xT + βAi xA + βVj xV + βBi Ti xBT

Over-dispersed Poisson GLM

Poisson GLM gives a deviance of 869.9 with degrees of freedom 230, clearly
indicating over-dispersion. To accommodate this, we may fit the over-dispersed
Poisson model with var(y) = φµ.

For the parameter estimation of φ, we may use the deviance or Pearson chi-squared
statistic.

From the deviance we have φ̂ = 3.8 = exp(1.33) = 869.9/230

From the Pearson chi-squared statistic we have φ̂ = 4.5 = exp(1.505) = 1036.3/230
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ex. Epilepsy continued

Because the deviance residuals are the best normalizing transformation under the
exponential family, it gives an estimator with small variance, but it gives an
inconsistent estimate.

Hilbe (2014) recommended to use the Pearson chi-squared statistics because it gives
a consistent estimator.

In finite sample, the deviance often gives more efficient estimators (Nelder and Lee,
1992). Thus, it is recommended to use the deviance in small samples.

Correlation among repeated measures should be considered, so HGLM should be
used for further analysis.
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ex. Epilepsy continued - Over-dispersed GLM

Based on deviance statistic
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ex. Epilepsy continued - Over-dispersed GLM

Model summary
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (mean model)
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (dispersion model)
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ex. Epilepsy continued - Over-dispersed GLM

Based on Pearson chi-squared statistic
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ex. Epilepsy continued - Over-dispersed GLM

Model summary
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (mean model)
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ex. Epilepsy continued - Over-dispersed GLM

Model checking plots (dispersion model)
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ex. Injection - injection(page68).csv

An industrial Taguchi experiment was performed to study the influence of several
controllable factors on the mean value and the variation in the percentage of
shrinkage of products made by injection molding (Engel, 1992).

y : percentage of shrinkage of products made by injection molding

Controllable factors Noise factors
A : cycle time M : percentage regrind
B : mould temperature N : moisture content
C : cavity thickness O : ambient temperature
D : holding pressure
E : injection speed
F : holding time
G : gate size
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ex. Injection - injection(page68).csv

This dataset has been attended by many researchers because the model checking
plots were not satisfactory.

Lee and Nelder (1997) gave extensive discussion on how to choose a good model
and presented the heteroscedastic log-linear model.

Heteroscedastic log-linear model

Model with log-normal distribution and the identity link η = µ

Mean Model

η = β0 + βAA + βC C + βDD + βE E + βGG + βNN + βC·NC · N + βE ·NE · N

Dispersion Model
log φ = γ0 + γAA + γF F
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ex. Injection molding - heteroscedastic log-linear model
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ex. Injection molding - heteroscedastic log-linear model

Model summary

174 / 569



ex. Injection molding - heteroscedastic log-linear model

Model checking plots (mean model)
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ex. Injection molding - heteroscedastic log-linear model

Model checking plots (dispersion model)
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ex. Crack growth continued

Review : Gamma GLM

Model : η = logµ = α + β crack0

Gamma GLM with structured dispersion

We may estimate φ either based on deviance or Pearson chi-squared statistic.

In this example, degrees of fredom is large (239). We may prefer the Pearson
chi-squared statistic in estimating φ.

Mean Model : η = logµ = β0 + β1 crack0

Dispersion Model : log φ = γ0 + γ1 cycle
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ex. Crack growth continued - gamma GLM with structured dispersion

Based on deviance statistic

178 / 569



ex. Crack growth continued - gamma GLM with structured dispersion

Model summary
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (mean model)
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (dispersion model)
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ex. Crack growth continued - gamma GLM with structured dispersion

Based on Pearson chi-squared statistic
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ex. Crack growth continued - gamma GLM with structured dispersion

Model summary
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (mean model)
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ex. Crack growth continued - gamma GLM with structured dispersion

Model checking plots (dispersion model)
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ex. Bacteria - bacteria(page76).csv

Tests of the presence of the bacteria H. influenzae in children with otitis media in
the Northern Territory of Australia (MSHR 1999–2000 Annual Report).

y : 1(presence), 0(absence)

ap : a(active), p(placebo)

hilo : hi(high compliance), lo(low compliance)

week : number of week at test (0,2,4,6,11)

ID : subject ID

trt : placebo, drug(a & lo), drug+(a & hi)

Binomial GLMM

pij = P(yij = 1|vi )

vi ∼ N(0, λ)

log
(

pij

1− pij

)
= β0 + β1I(i = drug) + β2I(i = drug+) + vi
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ex. Bacteria - binomial GLMM
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ex. Bacteria - binomial GLMM

Model summary
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ex. Bacteria - binomial GLMM

Model checking plots (residual)
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ex. Bacteria - binomial GLMM

Model checking plots (random effects)
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Chapter 5. HGLMs: Modeling

In this chapter, a number of dataset are modeled using HGLMs.

In the first few example we show analyses using normal, log-normal, gamma,
Poisson, and binomial HGLMs.

Thereafter, examples using HGLMs including structured dispersion are given.

We also fit models with correlated random effects, including spatial models.
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ex. Cake - cake(page95).csv

Experiment on the preparation of chocolate cakes, conducted at Iowa State College
(Cochran and Cox, 1957).

Replicate : 15 replications

Batch : 3 batters

Recipe : R1(Recipe I), R2(Recipe II), R3(Recipe III)

Temperature : 6 different baking temperatures (175 ◦C ∼ 225 ◦C)

Angle : breaking angle

inter : Batch2

logAngle : logarithm of Angle
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ex. Cake - cake(page95).csv

Normal linear mixed model

i = 1, 2, 3 for recipes, j = 1, · · · , 6 for temperatures and k = 1, · · · , 15 for replicates.

yijk |vi , vik ∼ N(µijk , σ
2)

µijk = µ+ γi + τj + (γτ)ij + vk + vik

Log-normal linear mixed model

The same model but with responses log yijk gives a better fit.

logµijk = µ+ γi + τj + (γτ)ij + vk + vik

Gamma GLMM

yijk |vi , vik ∼ Gamma
(

1
φ
, 1
µijkφ

)
logµijk = µ+ γi + τj + (γτ)ij + vk + vik
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ex. Cake - normal linear mixed model
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ex. Cake - normal linear mixed model

Model summary
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ex. Cake - normal linear mixed model

Model checking plots
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ex. Cake - log-linear mixed model
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ex. Cake - log-linear mixed model

Model summary
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ex. Cake - log-linear mixed model

Model checking plots

199 / 569



ex. Cake - gamma GLMM
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ex. Cake - gamma GLMM

Model summary
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ex. Cake - gamma GLMM

Model checking plots
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ex. Fabric - fabric(page100).csv

Fabric data (Bissell, 1972).

l : fabric length

y : number of faults in a bolt of fabric

rf : 32 observations

x : logarithm of fabric length
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ex. Fabric - fabric(page100).csv

Poisson GLM

y ∼ Poi(µ) and x = log l
logµ = α + βx

Deviance = 64.5 with 30 df: over-dispersion

It may be caused by the assumed Poisson regression model begin incorrect (Azzaline
et al., 1989 and Firth et al., 1991).

Poisson-gamma HGLM

Bissell(1972) proposed the use of the negative binomial model, which can be fitted
via a Poisson HGLM.

y |u ∼ Poi(µ)

When u follows the gamma distribution with E(u) = 1 and var(u) = λ,

logµ = α + βx + log u
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ex. Fabric - Poisson-gamma HGLM
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ex. Fabric - Poisson-gamma HGLM

Model summary
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ex. Fabric - Poisson-gamma HGLM

Model checking plots (residual)
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ex. Fabric - Poisson-gamma HGLM

Model checking plots (random effects)
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ex. Train continued

Review : Poisson GLM

y ∼ Poi(µ)

logµ = log t + α + βx

Poisson-gamma HGLM

Fitting the data assuming a Poisson GLM, there exist two outliers which give
marginally significant lack of fit.

we fit a negative binomial model via a Poisson-gamma HGLM with saturated
random effects for full response, number of train accidents.

y |u ∼ Poi(µ)

When u follows the gamma distribution with E(u) = 1 and var(u) = λ,

logµ = log t + α + βx + log u
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ex. Train continued - Poisson-gamma HGLM

210 / 569



ex. Train continued - Poisson-gamma HGLM

Model summary
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ex. Train continued - Poisson-gamma HGLM

Model checking plots (residual)
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ex. Train continued - Poisson-gamma HGLM

Model checking plots (random effects)
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ex. Salamander - salamander(page105).csv

Three experiments were conducted : two were done with the same salamanders in
the summer and autumn and another on in the autumn of the same year using
different salamanders (McCullagh and Nelder, 1989).

In each experiment, 20 females and 20 males were paired six times for mating with
individuals from their own and the other population, resulting in 120 observations in
each experiment.

Season : Summer, Autumn

Experiment : 3 experiments

TypeM : type of male. 1(whiteside), 0(rough butt)

TypeF : type of female. 1(whiteside), 0(rough butt)

Cross : TypeM × TypeF

Male : 60 males (20 males for each experiment)

Female : 60 females (20 females for each experiment)

Mate : success of mating. 1(success), 0(failure)

214 / 569



ex. Salamander - salamander(page105).csv

Binomial GLMM

i , j = 1, · · · , 20 and k = 1, 2, 3

yijk : The outcome (Mate) for the mating of the i-th female with the j-th male in
the k-th experiment.

pijk = P(yijk = 1|v f
ik , vm

jk )

v f
ik ∼ N(0, σ2

f ), vm
jk ∼ N(0, σ2

m)

log
(

pijk

1− pijk

)
= β0 + Fi + Mj + (FM)ij + v f

ik + vm
jk

There have been many methods developed to obtain approximate ML estimators.

Noh and Lee (2007) showed that HL(1,2) has the smallest bias while HL(1,1) is fast
with results as follows.
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ex. Salamander - Binomial GLMM with HL(1,1)
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ex. Salamander - Binomial GLMM with HL(1,1)

Model summary
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ex. Salamander - Binomial GLMM with HL(1,1)

Model checking plots (residual)
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ex. Salamander - Binomial GLMM with HL(1,1)

Model checking plots (random effects)
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ex. Salamander - Binomial GLMM with HL(1,2)

220 / 569



ex. Salamander - Binomial GLMM with HL(1,2)

Model summary
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ex. Integrated circuit - circuit(page107).csv

The width of lines made by a photoresist-nanoline tool were measured in five
different locations on silicon wafers, measurement being taken before and after and
etching process being treated separately (Phadke et al, 1983).

9 experimental factors (A-I) arranged in an L18 orthogonal array and produced 33
measurements at each of 5 locations, giving a total of 165 observations.

Width : width of line

Wafer : 33 silicon wafers

Experimental factors
A : mask dimension F : aperture
B : photoresist viscosity G : exposure time
C : spin speed H : developing time
D : bake temperature I : etch time
E : bake time
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ex. Integrated circuit - circuit(page107).csv

Linear Mixed Models with structured dispersion

q: index for wafers(1∼33), r : index for observations within wafers

i , j, k, l ,m, n, o, p: index for A-H

vq ∼ N(0, λ) and eqr ∼ N(0, φ)

yijkop,qr = β0 + ai + bj + ck + go + hp + vq + eqr

λ and φ represent the between-wafer and within-wafer variances respectively, which
can be affected by the experimental factors.

The dispersion and random effect variance can be modeled as

log φimno = γω0 + aωi + eωm + f ωn + gω0

log λm = γb
0 + eb

m
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ex. Intergrated circuit - LMM with structured dispersion
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ex. Intergrated circuit - LMM with structured dispersion

Model summary

225 / 569



ex. Intergrated circuit - LMM with structured dispersion

Model checking plots (mean model)
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ex. Intergrated circuit - LMM with structured dispersion

Model checking plots (dispersion model)
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ex. Semiconductor - semiconductor(page109).csv

Designed experiment in a semiconductor plant, which is of interest to study the
curvature or camber of the substrate devices produced in the plant (Myers et al.,
2002).

There is a lamination process, and the camber measurement is made four times on
each device produced.

Device : 16 devices

x1-x6 : 6 employed factors (each design variable is taken at 2 levels)

y : camber taken in 10−4 in./in.

Gamma HGLM with structured dispersion

When y |v ∼ Gamma with E(y |v) = µ and Var(y |v) = φµ2,

logµ = β0 + x1β1 + x3β3 + x5β5 + x6β6 + v

log φ = γ0 + x2γ2 + x3γ3
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ex. Semiconductor - gamma HGLM with structured dispersion
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ex. Semiconductor - gamma HGLM with structured dispersion

Model summary
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ex. Semiconductor - gamma HGLM with structured dispersion

Model checking plots (mean model)
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ex. Semiconductor - gamma HGLM with structured dispersion

Model checking plots (dispersion model)
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ex. Respiratory - respiratory(page111).csv

Data from a clinical trial comparing two treatments for a respiratory illness (Strokes
et al., 1995)

In each of two medical centers, 111 patients were randomly assigned to active
treatment (54) or placebo (57). During treatment, respiratory status was determined
at 4 visits.

y : respiratory status during treatment. 1(good), 0(poor)

patient : 111 patients

treatment, trt : 1(active treatment), 0(placebo)

sex, msex : 1(male), 0(female)

age : age of patients

center : 2 medical centers

baseline, base : baseline respiratory status. 1(good), 0(poor)

past : respiratory status for last visit. 1(good), 0(poor)
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ex. Respiratory - respiratory(page111).csv

Binomial HGLM with structured dispersion

i = 1, · · · , 111 and j = 1, 2, 3, 4

pij = P(yij = 1|vi , yi(j−1))

vi ∼ N(0, λi )

log
(

pij

1− pij

)
= β

(µ)
0 + β

(µ)
1 trti + β

(µ)
2 msexi + β

(µ)
3 agei

+ β
(µ)
4 centeri + β

(µ)
5 basei + β

(µ)
6 yi(j−1) + vi

The random effects have a structured dispersion.

log λi = β
(λ)
0 + β

(λ)
1 agei
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ex. Respiratory - Binomial HGLM with structured dispersion
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ex. Respiratory - Binomial HGLM with structured dispersion

Model summary
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ex. Respiratory - Binomial HGLM with structured dispersion

Model checking plots (mean model)
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ex. Respiratory - Binomial HGLM with structured dispersion

Model checking plots (variance of random effects)
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ex. Orthodontic growth - orthodont(page113).csv

Data contain the growth measurement of 27 childrens from age 8 until age 14
(Pinheiro and Bates, 2000).

Every two years, the distance between the pituitary and the pterygomaxillary fissure
was recorded using x-ray images of the skull.

distance : distance of the subject (mm)

age : age (8, 10, 12, 14)

Subject : 16 male(boys) and 11 female(girls)

Sex : Male, Female

M : 1(Male), 0(Female)

Mage : M×age

F : 1(Female), 0(Male)

Fage : F×age
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ex. Orthodontic growth - orthodont(page113).csv

Correlated random intercept and slope model

yij : distance of the i-th subject at the j-th age Aij

eij ∼ N(0, φij )

The random intercept v1i and random slope v2i are assumed to be bivariate normal

distribution. (v1i , v2i )ᵀ ∼ BVN
(

0,
(

λ1 ρ
√
λ1λ2

ρ
√
λ1λ2 λ2

))

yij = β1Fi + β2Fi Aij + β3Mi + β4Mi Aij + v1i + Aijv2i + εij
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ex. Orthodontic growth - Correlated random intercept and slope model
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ex. Orthodontic growth - Correlated random intercept and slope model

Model summary
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ex. Orthodontic growth - Correlated random intercept and slope model

Model checking plots (mean model)
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ex. Orthodontic growth - Correlated random intercept and slope model

Model checking plots for random intercept and slope
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ex. Scottish lip cancer - lip(page115).csv

Clayton and Kaldor (1987) analyzed observed and expected numbers of lip cancer
cases in the 56 administrative areas of Scotland with a view to produce a map that
would display regional variation in cancer incidence and yet avoid the presentation of
unstable rates for the smaller areas.

Presumably the spatial aggregation is due in large part to the effects of
environmental risk factors.

logE, n : Logarithm of expected numbers of lip cancer cases

O, y : Observed numbers of lip cancer cases

Paff : The percentage of the work force in each area employed in agriculture, fishing, or
forestry.

county : 56 administrative areas

x : Paff/10
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ex. Scottish lip cancer - lip(page115).csv

Poisson HGLM

yi |vi ∼ Poi(µi )

logµi = log ni + β0 + β1xi/10 + vi

The random effect vi represented unobserved area-specific log-relative risks. They
tried 3 models.

M1 vi ∼ N(0, λ)

M2 vi ∼ intrinsic autoregressive model (IAR)

M3 vi ∼ MRF in which Var(v)−1 = (I − ρM)/λ, where M is the incidence matrix
for neighbours.
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ex. Scottish lip cancer - lip(page115).csv

Lee and Nelder (2001) chose the model M3 as best.

The MRF model with ρ = 0 is the M1 model.

MRF with ρ̂ = 0.174 provides a suitable model.

We found that the main difference between M1 and M3 is the prediction for county
49, which has the highest predicted value because it has the largest ni . This gives
the very large leverage value (or hat value) of 0.92.

Though model checking plots are useful, our eyes could be misled, so that objective
criteria based upon the likelihood are also required in the model selection.
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ex. Scottish lip cancer - Poisson HGLM (M1)
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ex. Scottish lip cancer - Poisson HGLM (M1)

Model summary
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ex. Scottish lip cancer - Poisson HGLM (M1)

Model checking plots (mean model)
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ex. Scottish lip cancer - Poisson HGLM (M1)

Model checking plots for random effects
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ex. Scottish lip cancer - IAR model (M2)
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ex. Scottish lip cancer - IAR model (M2)

Model summary
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ex. Scottish lip cancer - IAR model (M2)

Model checking plots (mean model)

254 / 569



ex. Scottish lip cancer - IAR model (M2)

Model checking plots for random effects
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ex. Scottish lip cancer - MRF model (M3)
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ex. Scottish lip cancer - MRF model (M3)

Model summary
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ex. Scottish lip cancer - MRF model (M3)

Model checking plots (mean model)
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ex. Scottish lip cancer - MRF model (M3)

Model checking plots for random effects
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ex. Loaloa - loaloa(page117).csv

Dataset describes prevalence of infection by the nematode Loa loa in North
Cameroon, 1991-2001 (Rousset et al., 2016).

The study investigated the relationship between altitude, vegetation indices, and
prevalence of the parasite.

id, LOC : 197 locations

longitude : longitude of locations

latitude :latitude of locations

y : number of infected individuals at location

n : number of individuals at location

x1 : altitude (m)

x2-x4 : x2 = max (x1− 650, 0), x3 = max (x1− 1000, 0), x4 = max (x1− 1300, 0)

x5 : maximum normalized-difference vegetation index (NDVI) from repeated satellite
scans

x6 : standard error of NDVI
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ex. Loaloa - loaloa(page117).csv

Binomial HGLM with the logit link
yi |vi ∼ Binomial(ni , pi )

log
(

pi

1− pi

)
= β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + vi

The random effect vi is for the i-th location. Rousset et al. (2016) fitted HGLMs

M1 vi ∼ independent N(0, λ)
M2 vi ∼ normal distribution with variance λ and Matern correlation for two

locations which is represented by

(1− Nugget) (ρd)νKν(ρd)
2ν−1Γ(ν)

Nugget: parameter describing a discontinuous decrease in correlation at zero distance
ρ: scaling parameter, ν: smoothness parameter
Kν : bessel K function of order ν and d is distance computed by longitudes and
latitudes for two locations

261 / 569



ex. Loaloa - Binomial HGLM (M1)
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ex. Loaloa - Binomial HGLM (M1)

Model summary
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ex. Loaloa - Binomial HGLM (M1)

Model checking plots (mean model)
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ex. Loaloa - Binomial HGLM (M1)

Model checking plots for random effects
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ex. Loaloa - Matern model (M2)
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ex. Loaloa - Matern model (M2)

Model summary
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ex. Loaloa - Matern model (M2)

Model checking plots (mean model)
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ex. Loaloa - Matern model (M2)

Model checking plots for random effects
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ex. Gas Consumption - gas(page118).csv

Durbin and Koopman (2000) analyzed the lagged quarterly demand for gas in the
UK from 1960 to 1986.

y : Lagged quarterly demand for gas

year : 1960-1986

quarter : q1-q4

time : 108 times = 27 years×4 quarter

t43, t44 : 1 if time=43 or time=44

cos1, sin1 : cos(2πt/104) and sin(2πt/104) (t : time)
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ex. Gas Consumption - gas(page118).csv

Model 1 for gas data

Durbin and Koopman (2000) considered a local linear-trend model with quarterly
seasonals which can be represented as a normal HGLM.

ft =
∑t

j=1 rj and st =
∑t

j=1(t − j + 1)pj are random effects for the local linear
trend, the quarterly seasonal qt with wt =

∑3
j=0 qt−j .

rt ∼ N(0, λr ), pt ∼ N(0, λp), wt ∼ N(0, λw ), et ∼ N(0, φt )

yt = α + ft + st + qt + et

Lee, Nelder, and Pawitan (2017) add a linear trend βt and found that the random
walk ft is not necessary. Thus, they considered a model

yt = α + βt + st + qt + et

The residual plot displays apparent outliers, caused by a disruption in the gas supply
in the 3rd and 4th quarters of 1970.
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ex. Gas Consumption - gas(page118).csv

Model 2 for gas data

Lee, Nelder, and Pawitan (2017) proposed to delete the random quarterly seasonals
and add further fixed effects to model the 1970 disruption and seasonal effects.

yt = α + tβ + αi + tβi + δ1I(t = 43) + δ2I(t = 44)

+ γ1sin(2πt/104) + γ2cos(2πt/104) + st + et

Lee, Nelder, and Pawitan (2017) further found extra dispersion in the 3rd and 4th
quarters, which led to a structured dispersion model.

log φt = ϕ+ ψi
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ex. Gas consumption - Model 1

Make Variable
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ex. Gas consumption - Model 1
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ex. Gas consumption - Model 1

Model summary
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ex. Gas consumption - Model 1

Model checking plots
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ex. Gas consumption - Model 1

Model checking plots for random effects 1 and 2
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ex. Gas consumption - Model 2
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ex. Gas consumption - Model 2

Model summary
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ex. Gas consumption - Model 2

Model checking plots (mean model)
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ex. Gas consumption - Model 2

Model checking plots for random effects
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ex. Gas consumption - Model 2

Model checking plots (dispersion model)
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ex. Prestige - prestige(page122).csv

Prestige data from R package ”car” (Fox et al., 2016)

id : jobs

education : average education of occupational incumbents (year)

income : average income of incumbents ($)

women : percentage of incumbents who are women

prestige : Pineo-Porter prestige score for occupation

census : Canadian Census occupational code

type : type of occupation. bc(Blue Collar), prof(Professional, Managerial, and
Technical), wc(White Collar), NA
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ex. Prestige - prestige(page122).csv

Additive non-parametric regression model

f1(·) and f2(·) are unknown functions.

ei ∼ N(0, σ2)

yi = f1(x1i ) + f2(x2i ) + ei

Suppose that cubic smoothing splines are used to fit these unknown functions f1(·)
and f2(·), which are characterized by singular precision matrices, P1 and P2,
respectively (Lee, Nelder, and Pawitan, 2017).

This additive model can be fitted by using an HGLM.

yi = xT
i β + v1i + v2i + ei

xT
i = (1, x1i , x2i ), v1 ∼ N(0,P+

1 ) and v2 ∼ N(0,P+
2 ) are random effects with P+

being the Moore-Penrose inverse of P.
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ex. Prestige - prestige(page122).csv

The regression surface f̂1(x1i ) + f̂2(x2i ) from the additive model shows that prestige
increases with income and education.
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ex. Prestige - cubic spline

Cubic Spline
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ex. Prestige - cubic spline
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ex. Prestige - cubic spline

Covariance Kernel
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ex. Prestige - cubic spline
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Chapter 6. DHGLMs

We represent a DHGLM as {model(µ), model(φ)}

The original GLM: {GLM(µ), constant}

η(µ) = g (µ)(µ) = X (µ)β(µ)

The joint GLM: {GLM(µ), GLM (φ)}

η(µ) = g (µ)(µ) = X (µ)β(µ) η(φ) = g (φ)(φ) = X (φ)β(φ)

The HGLM: {HGLM(µ), constant}

η(µ) = X (µ)β(µ) + Z (µ)v (µ)

The HGLM with structured dispersion: {HGLM((µ)), GLM(φ)}

η(µ) = X (µ)β(µ) + Z (µ)v (µ) η(φ) = X (φ)β(φ)

η(λ) = X (λ)β(λ)
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DHGLMs

The DHGLM: {HGLM(µ), HGLM(φ)}

η(µ) = X (µ)β(µ) + Z (µ)v (µ) η(φ) = X (φ)β(φ) + Z (φ)v (φ)

η(λ) = X (λ)β(λ) η(α) = X (α)β(α)

The DHGLM: {DHGLM(µ), GLM(φ)}

η(µ) = X (µ)β(µ) + Z (µ)v (µ) η(φ) = X (φ)β(φ)

η(λ) = X (λ)β(λ) + Z (λ)v (λ)

η(τ) = X (τ)β(τ)

The DHGLM: {DHGLM(µ), HGLM(φ)}

η(µ) = X (µ)β(µ) + Z (µ)v (µ) η(φ) = X (φ)β(φ) + Z (φ)v (φ)

η(λ) = X (λ)β(λ) + Z (λ)v (λ) η(α) = X (α)β(α)

η(τ) = X (τ)β(τ)
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ex. Crack growth continued

Review : joint GLM

η
(µ)
ij = logµij = β

(µ)
0 + β

(µ)
1 lij−1

η
(φ)
ij = logφij = β

(φ)
0 + β

(φ)
1 tj

DHGLM

when v (µ)
i ∼ N(0, λ) and v (φ)

i ∼ N(0, α),

η
(µ)
ij = logµij = β

(µ)
0 + β

(µ)
1 lij−1 + v (µ)

i

η
(φ)
ij = logφij = β

(φ)
0 + β

(φ)
1 tj + v (φ)

i

cAIC selects this DHGLM as the best-fitting model.

We can conclude that heteroscedasticity between metallic specimens exists
significantly in the mean as well as in the dispersion.

292 / 569



ex. Crack growth continued

By using the studentized deviance residuals, we can obtain model-checking plots of
the model objects.

Figure: Normal probability plots for HGLM and DHGLM

Most of the outliers in HGLM, caused by abrupt changes among repeated measures,
disapper when random effects are allowed in the model for the residual variance.

293 / 569



ex. Crack growth continued - DHGLM
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ex. Crack growth continued - DHGLM

Model summary
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ex. Crack growth continued - DHGLM

Model checking plots (mean model)
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ex. Crack growth continued - DHGLM

Model checking plots (dispersion model)
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ex. Gas consumption continued

Review : HGLM

yt = α + tβ + αi + tβi + δ1I(t = 43) + δ2I(t = 44)

+ γ1sin(2πt/104) + γ2cos(2πt/104) + st + et

log φt = ϕ+ ψi

DHGLM

Consider the follow DHGLM, allowing heavy-tailed distriution for et

When v (φ)
t ∼ N(0, α),

yt = α + tβ + αi + tβi + δ1I(t = 43) + δ2I(t = 44)

+ γ1sin(2πt/104) + γ2cos(2πt/104) + st + et

log φt = ϕ+ ψi + v (φ)
t

cAIC selects DHGLM as the best-fitting model.
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ex. Gas consumption continued

The likelihood-ratio test for H0 : α = 0, based on the restricted likelihood, rejects
the null hypothesis (deviance difference : 18.8 > χ2

2δ(1) = 2.71 with significant level
δ = 0.05)

Figure: Normal probability plots for HGLM and DHGLM

We see that a big outlier in HGLM disappeared under the DHGLM.
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ex. Gas consumption continued - DHGLM
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ex. Gas consumption continued - DHGLM

Model summary
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ex. Exchange rate - exch(page148).csv

Daily observations for the weekday closing exchange rates for the U.K. Sterling/U.S.
Dollar from 1/10/81 to 28/6/85 (Harvey et al., 1994).

rt : Exchange rate at time t

yt : Mean-corrected returns. yt = 100
(

log(rt/rt−1)− 1
n
∑n

i=1 log(ri/ri−1)
)

yt1 : yt−1

yt12 : y 2
t−1

date : 936 observations

Consider the model
yt =

√
φtzt

where zt is the standard normal random variable and φt is a volatility at time t.

302 / 569



ex. Exchange rate - exch(page148).csv

ARCH(1) model

Engle (1982) introduced the ARCH model of order 1.

φt = β
(φ)
0 + β

(φ)
1 y 2

t−1

This is a joint GLM GLM(µ = 0), GLM(φ), which can be fitted by specifying the
identity link function for GLM(φ) and fixing the mean null.

GARCH(1,1) model

The ARCH(1) model was extended to the GARCH(1,1) model by Bollerslev (1986).

φt = β
(φ)
0 + β

(φ)
1 y 2

t−1 + γφt−1
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ex. Exchange rate - exch(page148).csv

By letting β∗(φ)
0 = β

(φ)
0 /(1− ρ) with ρ = β

(φ)
1 + γ,

v (φ)
t = φt − β∗(φ)

0

= β
(φ)
0 + β

(φ)
1 y 2

t−1 + γφt−1 − β∗(φ)
0

= β
(φ)
0 + β

(φ)
1 y 2

t−1 + ρ(φt−1 − β∗(φ)
0 )− β(φ)

1 φt−1 − (1− ρ)β∗(φ)
0

= β
(φ)
0 + β

(φ)
1 y 2

t−1 + ρ(φt−1 − β∗(φ)
0 )− β(φ)

1 φt−1 − β(φ)
0

= ρ(φt−1 − β∗(φ)
0 ) + β

(φ)
1 (y 2

t−1 − φt−1)

= ρv (φ)
t−1 + r (φ)

t

where r (φ)
t = β

(φ)
1 (y 2

t−1 − φt−1).

Thus, the GARCH(1,1) can be written as a dispersion model with correlated random
effects

φt = β
∗(φ)
0 + v (φ)

t

where v (φ)
t = ρv (φ)

t−1 + r (φ)
t .
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ex. Exchange rate - exch(page148).csv

To avoid negative volatility, we can consider the exponential GARCH (EGARCH),
with a log link η(φ)

t = log φt

η
(φ)
t = β

(φ)
0 + β

(φ)
1 y 2

t−1 + γη
(φ)
t−1

which is equivalent to
η

(φ)
t = β

∗(φ)
0 + v (φ)

t

Stochastic volatility (SV) model

If we take r (φ)
t ∼ N(0, α), i.e., v (φ)

t = ρv (φ)
t−1 + r (φ)

t ∼ AR(1), we have the stochastic
volatility (SV) model originating from Harvey et al. (1994).

For the data, SV model has cAIC = 1807 which has less than cAIC = 2006 for
ARCH and cAIC = 1863 for GARCH models, so that SV model is the best one
among alternative models.
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ex. Exchange rate - ARCH(1) model
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ex. Exchange rate - ARCH(1) model

Model summary
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ex. Exchange rate - ARCH(1) model

Model checking plots (dispersion model)
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ex. Exchange rate - GARCH(1,1) model
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ex. Exchange rate - GARCH(1,1) model

Model summary
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ex. Exchange rate - GARCH(1,1) model

Model checking plots (dispersion model)
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ex. Exchange rate - Stochastic volatility (SV) model
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ex. Exchange rate - Stochastic volatility (SV) model

Model summary
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ex. Orthodontic growth continued

Review : HGLM with random slope model

yij = β1Fi + β2Fi Aij + β3Mi + β4Mi Aij + v1i + Aijv2i + εij

DHGLM

Noh and Lee (2007) showed that a robust analysis against such outliers can be
obtained by adding random effects to the residual variance φij .

Thus, we consider the following DHGLM

yij = β
(µ)
1 Fi + β

(µ)
2 Fi Aij + β

(µ)
3 Mi + β

(µ)
4 Mi Aij + v (µ)

1i + Aijv (µ)
2i + εij

log(φij ) = β
(φ)
0 + v (φ)

i

where v (φ)
i ∼ N(0, α).
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ex. Orthodontic growth continued

Among models we considered, cAIC selects DHGLM as the best fitting model.

The likelihood-ratio test for H0 : α = 0 based on the RL, rejects the null hypothesis
(deviance difference : 37.9 > χ2

2δ(1) = 2.71 with significant level δ = 0.05)

Figure: Normal probability plots for HGLM and DHGLM

Model checking plots for the DHGLM show that all large outliers (whose sizes are
bigger than 4) disappear.
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ex. Orthodontic growth continued - DHGLM
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ex. Orthodontic growth continued - DHGLM

Model summary

317 / 569



ex. Schizophrenic behavior - schizophrenic.csv

Schizophrenic behavior data from an eye-tracking experiment with a visual target
moving back and forth along a horizontal line on a screen (Rubin and Wu, 1997).

The outcome measurement is called the gain ratio, and it is recorded repeatedly at
the peak velocity of the target during eye-tracking under three conditions (PS:plain
sine, CS:color sine, TR:triangular).

In the experiment, exch subject is exposed to 5 trials, usually 3 PS, 1 CS, and 1 TR.

During each trial, there are 11 cycles. However, for some cycles the gain ratios are
missing beacuse of eye blinks.

On average, there are 34 observations out of 55 cycles for each subject (2906
observations from 4730 cycles).

We assume (for simplicity) that the missing data are missing at random (MAR).
Under MAR assumption, we can perform the analysis using only observed data.
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ex. Schizophrenic behavior - schizophrenic.csv

y : gain ratio = (eye velocity)/(target velocity)

x1 : 1/2(PS), -1/2(CS), 0(TR)

x2 : -1/3(PS or CS), 2/3(TR)

sex : -1/2(female), 1/2(male)

time : measurement time

schiz : 1(schizophrenic), 0(non-schizophrenic)

subject : 43 non-schizophrenic subject (22 females and 21 males) and 43 schizophrenic
subject (13 females and 30 males)
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ex. Schizophrenic behavior - schizophrenic.csv

HGLM

yij : gain ratios for the j-th measurement of the i-th subject.

yij = β
(µ)
0 + x1ijβ

(µ)
1 + x2ijβ

(µ)
2 + tjβ

(µ)
3 + schiβ

(µ)
4 + schi · x1ijβ

(µ)
5

+ schi · x2β
(µ)
6 + v (µ)

i + eij

where v (µ)
i ∼ N(0, λ) is the subject random effect, eij ∼ N(0, φ) is a white noise.

We find that schizophrenic patients have a larger variance.

log(φi ) = β
(φ)
0 + schiβ

(φ)
1
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ex. Schizophrenic behavior - schizophrenic.csv

DHGLM

Psychologists have known for a long time about large variations in
within-schizophrenic performance on almost any task (Silverman, 1967). Thus,
abrupt changes among repeated response may be peculiar to schizophrenics and
such volatility may differ for each patients.

Such heteroscedasticity among schizophrenics cannot be modeled by the fixed effect
model, but can be modeled by a DHGLM, introducing a random effect in the
dispersion.

When v (φ)
i ∼ N(0, α),

log(φi ) = β
(φ)
0 + schiβ

(φ)
1 + schi v (φ)

i

v (µ)
i and v (φ)

i are independent.
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ex. Schizophrenic behavior - schizophrenic.csv

cAIC shows that DHGLM has a better fit than HGLM.

By using the studentized deviance residuals, we can obtain model-checking plots.

Figure: Normal probability plots for HGLM and DHGLM

We see that most of the outliers in HGLM, caused by abrupt changes among
repeated measures, disappear when random effects are allowed in the model for the
residual variance.
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ex. Schizophrenic behavior - HGLM
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ex. Schizophrenic behavior - HGLM

Model summary
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ex. Schizophrenic behavior - HGLM

Model checking plots (mean model)
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ex. Schizophrenic behavior - HGLM

Model checking plots (dispersion model)
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ex. Schizophrenic behavior - DHGLM
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ex. Schizophrenic behavior - DHGLM

Model summary
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ex. Respiratory continued

Review : HGLM

log
(

pij

1− pij

)
= β

(µ)
0 + β

(µ)
1 trti + β

(µ)
2 msexi + β

(µ)
3 agei

+ β
(µ)
4 centeri + β

(µ)
5 basei + β

(µ)
6 yi(j−1) + vi

log λi = β
(λ)
0 + β

(λ)
1 agei

DHGLM

With binary data, it is difficult to identify the distribution of random effects.

The use of a heavy-tailed distribution for random effects by allowing random effects
for λ, removes sensitivity of the paramter estimation to the choice of random effect
distribution (Noh et al, 2005).

For binary data, they showed that GLMM estimators can give serious biases if the
true distribution is not normal.

329 / 569



ex. Respiratory continued

Consider the following DHGLM,

log
(

pij

1− pij

)
= β

(µ)
0 + β

(µ)
1 trti + β

(µ)
2 msexi + β

(µ)
3 agei

+ β
(µ)
4 centeri + β

(µ)
5 basei + β

(µ)
6 yi(j−1) + vi

log λi = β
(λ)
0 + β

(λ)
1 agei + v (λ)

i

where v (µ)
i ∼ N(0, λi ) and v (λ)

i ∼ N(0, τ).

The likelihood-ratio test for H0 : τ = 0, based on the restricted likelihood, rejects the
null hypothesis (deviance difference : 3.3 > χ2

2δ(1) = 2.71 with significant level
δ = 0.05)
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ex. Respiratory continued

Figure: Normal probability plots of λ for HGLM and DHGLM

We see that liarge outliers, and anunpleasane pattern in the normal probability plot
under the HGLM, disappear under the DHGLM. Thus, the DHGLM is preferred.

Furthermore, there are apparent differences between parameter estimates.

In this case, we should report the results from the DHGLM because a distributional
assumption of random effects is hard to identify with the binary data.

331 / 569



ex. Salamander continued

Review : HGLM

log
(

pijk

1− pijk

)
= β0 + Fi + Mj + (FM)ij + v f

ik + vm
jk

DHGLM

For this binary set, we fit a DHGLM model

log
(

pijk

1− pijk

)
= x t

ijkβ
(µ) + v (µ)

fik + v (µ)
mjk

log(λfik ) = β
(λ)
f 0 + b(λ)

fik

log(λmik ) = β
(λ)
m0 + b(λ)

mik

where v (µ)
fik ∼ N(0, λfik ), v (µ)

mjk ∼ N(0, λmjk ), bλfik ∼ N(0, τf ), and b(λ)
mik ∼ N(0, τm).
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ex. Salamander continued

The cAIC difference between HGLM and DHGLM is less than 1, so that there would
be no advantage to use the heavy-tailed distribution, compared with the normal
distribution.

The likelihood-ratio test for H0 : τf = 0, τm = 0 based on RL does not reject the null
hypothesis (deviance difference : 2.4 which has p-value of
0.243 = 0.5× P(χ2(1) > 2.4) + 0.25× P(χ2) > 2.4) (Self and Liang, 1987).

Estimates between HGLM and DHGLM are slightly different, which also strongly
indicating the adequacy of normality for the distribution of random effects.
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ex. Respiratory continued - DHGLM
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ex. Respiratory continued - DHGLM

Model summary
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ex. Bacteria continued

Reviewd : Binomial GLMM

pij = P(yij = 1|vi )

log
(

pij

1− pij

)
= β0 + β1I(i = drug) + β2I(i = drug+) + vi

where vi ∼ N(0, λ)

DHGLM

We fit a follow DHGLM model.

log
(

pij

1− pij

)
= β

(µ)
0 + β

(µ)
1 I(i = drug) + β

(µ)
2 I(i = drug+) + v (µ)

i

log(λi ) = β
(λ)
0 + v (λ)

i

where v (µ)
i ∼ N(0, λi ) and v (λ)

i ∼ N(0, τ).
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ex. Bacteria continued

cAIC from the HGLM is 205.0, while that from the DHGLM is 204.5.

The cAIC difference is less than 1, so that there would be no advantage to use the
heavy-tailed distribution.

The likelihood=ratio test for H0 : τ = 0 based on the RL, does not reject the null
hypothesis (deviance difference : 0.8 < χ2

2δ(1) = 2.71 with significant level
δ = 0.05).

Estimates between HGLM and DHGLM are only slightly different, which also
strongly indicates the adequacy of normality for the distribution of random effects.
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ex. Bacteria continued - DHGLM
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ex. Bacteria continued - DHGLM

Model summary
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ex. Epilepsy continued

log(µij ) = β
(µ)
0 + xBiβ

(µ)
B + xTiβ

(µ)
T + xAiβ

(µ)
A + xVjβ

(µ)
V + xBi Tiβ

(µ)
BT + v (µ)

i + v (µ)
ij

log(λ1i ) = β
(λ1)
0 + v (λ1)

i and log(λ2i ) = β
(λ2)
0 + v (λ2)

ij

NB-gamma HGLM
v (µ)

i ∼ G(λ1i ), v (λ1)
i = 0, v (µ)

ij ∼ G(λ2ij ), and v (λ2)
ij = 0

Poisson-normal DHGLM
v (µ)

i ∼ N(0, λ1i ), v (λ1)
i ∼ N(0, τ1), v (µ)

ij = 0, and v (λ2)
ij = 0

Poisson-normal-gamma DHGLM
v (µ)

i ∼ N(0, λ1i ), v (λ1)
i = 0, v (µ)

ij ∼ G(λ2ij ), and v (λ2)
ij ∼ N(0, τ2)

Poisson-gamma-gamma DHGLM1
v (µ)

i ∼ G(λ1i ), v (λ1)
i = 0, v (µ)

ij ∼ G(λ2ij ), and v (λ2)
ij ∼ N(0, τ2)

Poisson-gamma-gamma DHGLM2
v (µ)

i ∼ G(λ1i ), v (λ1)
i ∼ N(0, τ1), v (µ)

ij ∼ G(λ2ij ), and v (λ2)
ij ∼ N(0, τ2)

quasi Poisson-normal DHGLM
v (µ)

i ∼ N(0, λ1i ), v (λ1)
i ∼ N(0, τ1), and var(yij |v (µ)

i , v (µ)
ij ) = φµij
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ex. Epilepsy continued

The likelihood-ratio test for H0 : τ2 = 0 based on the RL rejects the null hypothesis
(deviance difference : 32.4 > χ2

2δ(1) = 2.71 with significant level δ = 0.05 between
NB-gamma HGLM and Poisson-gamma-gamma DHGLM1).

The likelihood-ratio test for H0 : τ1 = 0 based on the RL doesn’t rejects the null
hypothesis (deviance difference : 0 between Poisson-gamma-gamma DHGLM1 and
Poisson-gamma-gamma DHGLM2).

Thus, the likelihood-ratio test selects the Poisson-gamma-gamma DHGLM1.

Model cAIC rAIC
NB - gamma HGLM 1163.9 1274.8

Poisson - normal DHGLM 1270.5 1349.1
Poisson - normal - gamma DHGLM 1183.0 1282.7

Poisson - gamma - gamma DHGLM1 1144.2 1244.4
Poisson - gamma - gamma DHGLM2 1146.1 1246.4

quasi Poisson - normal DHGLM 1217.2 1319.6
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ex. Epilepsy continued - Poisson-gamma-gamma DHGLM1
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ex. Epilepsy continued - Poisson-gamma-gamma DHGLM1

Model summary
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ex. Stroke - stroke(page167).csv

Approximately 30% of hospitalized patients due to acute ischemic stroke are placed
in the risk of early neurologic deterioration (END) at their hospital stay.

The patient’s risk to END can be monitored by following their blood pressure (BP).

Data has systolic BP (SBP) with time in hours after arriving at the emergency room
for two stroke patients (one is END; the other is non-END).

time, time1 : Times after arriving at the emergency room (hrs)

y1 : SBP of END stroke patient

y2 : SBP of non-END stroke patient
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ex. Stroke - stroke(page167).csv

Joint spline model

For detection of changes in SBP with respect to time, we use cubic splines
(Silverman, 1967; Green and Silverman, 1994) not only for the mean changes but
also for variance changes, using the joint cubic splines model (Lee and Nelder, 2006).

yt : SBP measurement at time t, et ∼ N(0, φt )

fm(t) and fd (t) : unknown functions of the mean and variance.

yt = fm(t) + et and log φt = fd (t)

For joint fitting of the mean µt and variance φt , we use the DHGLM.

µt = β
(µ)
0 + β

(µ)
1 t + v (µ)

t

log φt = β
(φ)
0 + β

(φ)
1 t + v (φ)

t

where v (µ)
t

[
v (φ)

t

]
is the random component with mean 0 and a singular precision

matrix P/λ(µ) [P/λ(φ)] (Lee, Nelder, and Pawitan, 2017).
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ex. Stroke - stroke(page167).csv

Figure: Joint cubic splines for SBP (END: solid line, non-END: dashed line)

Mean patterns for END and non-END patients are similar, so that it has been very
difficult to predict the potential END patients. However, it can be noticed from the
plot that the END patient has higher variance in SBP than non-END patient.

Thus, the variance of the SBP is used as a covariate for predicting an END event,
which greatly prevents the occurrence of END patients in the emergency room in
Korea.
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ex. Stroke - joint spline

Joint spline for y1 and y2
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ex. Stroke - joint spline

Cubic spline for mean of y1 and y2
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ex. Stroke - joint spline

Cubic spline for dispersion of y1 and y2
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ex. Curve - curve.csv

The raw data are generated from normal distribution with the true mean and
variance, described in plot.
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ex. Curve - curve.csv

Raw data
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ex. Curve - joint spline

Setting for cubic spline and joint spline
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ex. Curve - joint spline

Cubic spline results
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ex. Curve - joint spline

Joint spline results
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An extension of linear mixed models via DHGLM

The IWLS algorithm gives fast computations using GLM estimations.
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An extension of linear mixed models via DHGLM

Consider the DHGLM introduced in Chapter 1(1.4)

y = X(µ)β(µ) + Z (µ)v (µ) + e

e ∼ N(0, exp(X(φ)β(φ) + Z (φ)v (φ)))

with v (µ) ∼ N(0, λI), v (φ) ∼ N(0, αI), cor(v (µ), v (φ)) = 0
We specify the h-likelihood to show that it is rather easy to specify even though the model
is rather advanced.

h = log(f (y |v (µ), v (φ))) + log(f (v (µ))) + log(f (v (φ)))

=
1
2

log(|V |)−
1
2

(y − (X(µ)β(µ) + Z (µ)v (µ)))>V−1

× (y − (X(µ)β(µ) + Z (µ)v (µ)))

−
m
2

log(λ)−
1

2λ2 (v (µ))>(v (µ))

−
m
2

log(α)−
1

2α2 (v (φ))>(v (φ))

where V = diag(exp(X(φ)β(φ) + Z (φ)v (φ))).
We could allow correlations among all random components e, v (µ), v (φ), which leads to
many other interesting models to explore.
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Chapter 7. MDHGLMs

As a most general model for a single response, we presented a DHGLM, which has a
great room for further generalization by including more general correlation patterns
among random effects.

In this chapter, we introduce multivariate models for various types of responses
including continuous, proportion, counts, events, etc.

We show that general multivariate models can be generated by connecting DHGLMs
for various responses with correlated random effects.

Correlation bewtween random components is essential in the definition of joint
models, where correlations among multivariate responses are modeled via correlated
random effects.
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Ethylene glycol - EG(page178).csv

Data from a study on the developmental toxicity of ethylene glycol (EG) in mice
(Price et al., 1985).
Times-pregnant CD-1 mices were dosed by gavage with EG in distilled water on
gestational days 6 through 15.

litter, id : 94 dams
dose : dose (g/kg)
y1 : fetal weight (g)
y2 : 1(malformation), 0(not)
dose2 : dose2

Malformations Weight (g)
Dose (g/kg) Dams Live No. % Mean (S.D)

0.00 25 297 1 (0.34) 0.972 (0.0976)
0.75 24 276 26 (9.42) 0.877 (0.1041)
1.50 22 229 89 (38.86) 0.764 (0.1066)
3.00 23 226 129 (57.08) 0.704 (0.1238)
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Ethylene glycol - EG(page178).csv

Bivariate HGLM

yij = (y1ij , y2ij )ᵀ : bivariate responses from j-th mouse, born from i-th dam

vij = (wi , ui )ᵀ : unobserved random effects for the i-th dam

It is assumed that y1ij and y2ij are conditionally independent given vi .

Figure: Path diagram for the MDHGLM fitted to the EG data
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Ethylene glycol - EG(page178).csv

Hence, the following bivariate HGLM is proposed

y1ij |wi ∼ N(µij , φ)

where µij = x1ijβ1 + wi ,
y2ij |ui ∼ Bernoulli(pij )

where log
(

pij
1−pij

)
= x2ijβ2 + ui , and

vi ∼ N
(

0,Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
We consider three models

M1 Independent random-effects model where ρ = 0

M2 Random-effects model with a saturated variance-covariance matrix

M3 Shared random-effects models where ui = δwi for some constant δ
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ex. EG - independent model (M1)
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ex. EG - independent model (M1)

Model summary (M1)
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ex. EG - correlated model (M2)

Model summary for (M2)
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ex. EG - correlated model (M2)
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ex. EG - shared model (M3)
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ex. EG - shared model (M3)

Model summary for M3
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ex. Rheumatoid arthritis - ra(page180).csv

The Rheumatoid Arthritis Patients rePort Onset Re-activation sTudy (RAPPORT
study) : longitudinal study that aims to identify an increase in disease activity by
self-reported questionnaires.

Self-reported questionnaires are provided for patients every 3 months together with
clinical evaluations of patients’ disease status.

HAQ and RADAI were used for patients to self-report their functional status.

A clinical examination was recorded using the DAS28, which is a composite score
that includes for example the swollen joints counts. The DAS28 score varies between
0 and 10.

There are 159 patients and 5 visits for each patients.

Not all patients gave information for each k-th response and not all patients were
measured at each of the 5 visits.

HAQ : Health assessment questionnaires (20 questions from 8 categories)

RADAI : Rheumatoid arthritis disease activity index (5 items)

DAS28 : Disease activity score with 28 joint counts
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ex. Rheumatoid arthritis - ra(page180).csv

y1 : DAS28

y2 : 1(HAQ > 0.5), 0(HAQ < 0.5)

y3 : 1(RADAI > 2.2), 0(RADAI < 2.2)

time : month of measurement (0,3,6,9,12)

age : age at the baseline

sex : 1(female), 0(male)

subject : 159 patients
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ex. Rheumatoid arthritis - ra(page180).csv

Multivariate model with 3 responses

yij = (y1ij , y2ij , y3ij )ᵀ : response from j-th visits of the i-th (patients i = 1, 2, . . . , 159
and j = 1, 2, . . . , 5)

Xk : designed matrix for k-th response

As covariates we use the intercept, time, age, and sex.

Figure: Path diagram for the MDHGLM fitted to the rheumatoid arthritis data
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ex. Rheumatoid arthritis - ra(page180).csv

We consider the following multivariate model with three responses.

y1ij |v11i , v12i ∼ N(X1ijβ1 + v11i + v12i · time, φ)

y2ij |v21i ∼ Bernoulli
(

exp(X2ijβ2 + v21i )
1 + exp(X2ijβ2 + v21i )

)
y3ij |v31i ∼ Bernoulli

(
exp(X3ijβ3 + v31i )

1 + exp(X3ijβ3 + v31i )

)
The model for DAS28 includes a random intercept and slope, while HAQ and
RADAI have only random intercepts.

We assume a 4-dimensional latent structure :v11i
v12i
v21i
v31i

 ∼ MVN


0

0
0
0

 ,


λ11 ρ1λ∗11,12 ρ2λ∗11,21 ρ3λ∗11,31

ρ1λ∗12,11 λ12 ρ4λ∗12,21 ρ5λ∗12,31
ρ2λ∗21,11 ρ4λ∗21,12 λ21 ρ6λ∗21,31
ρ3λ∗31,11 ρ5λ∗31,12 ρ6λ∗31,21 λ31




where λ∗ij,kl =
√
λijλkl .
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ex. Rheumatoid Arthritis - correlated model
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ex. Rheumatoid Arthritis - correlated model

Model summary for response 1
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ex. Rheumatoid Arthritis - correlated model

Model summary for response 2 and 3
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ex. Rheumatoid Arthritis - correlated model
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ex. National merit scholarship qualifying test - nmsqt(page184).csv

National merit twins data including extensive questionnaires from 839 adolescent
twins, who took the national merit scholarship qualifying test (NMSQT) in 1962
among the roughly 600,000 US high school juniors (Loehlin and Nichols, 1976).

They were diagnosed as identical (509 pairs) or same-sex fraternal (330 pairs) by a
brief mail questionnaire.

Later, they completed a 1082-item questionnaire covering a variety of behaviors,
attitudes, personality, life experiences, health, vocational preferences, etc., plus the
480-item California psychological inventory.

Twins’ scores on the NMSQT and their five subscales are also included.

The 285-item questionnaire filled out by the parent was mainly focused on the life
histories and experiences of the twins.
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ex. National merit scholarship qualifying test - nmsqt(page184).csv

pairnum : 768 pairs
y1, y2, y3, y4 : NMSQT scores recorded within 0-100. English(y1), mathematics(y2),

social science(y3) and natural science(y4)

variables code definition

Gender x1 1(male), 2(female)
Mother’s x2 1(≤8th grade), 2(part high school),
educational level 3(high school grad), 4(part college),

5(college grad), 6(graduate degree)
Father’s x3 1(≤8th grade), 2(part high school),
educational level 3(high school grad), 4(part college),

5(college grad), 6(graduate degree)
Family x4 1(≤$5000), 2($5000 to $7500)
income level 3($7500 to $10000), 4($10000 to $15000)

5($15000 to $20000), 6($20000 to $25000)
7(≥$25000)

Zygosity x5 0(identical), 1(fraternal)
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ex. National merit scholarship qualifying test - nmsqt(page184).csv

Figure: Path diagram for the MDHGLM fitted to the NMSQT for twins data
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ex. National merit scholarship qualifying test - nmsqt(page184).csv

Multivariate HGLM

We consider a multivariate HGLM with 4 response variables for the j-th person of
the i-th twin. For k = 1, 2, 3, 4,

ykij |vki ∼ N(Xijβ
(µ)
k + vki , φkij )

where random effects follow multivariate normal distribution
v1i

v2i

v3i

v4i

 ∼ MVN




0
0
0
0

 ,


λ1i ρ1λ

∗
1i,2i ρ2λ

∗
1i,3i ρ3λ

∗
1i,4i

ρ1λ
∗
2i,1i λ2i ρ4λ

∗
2i,3i ρ5λ

∗
2i,4i

ρ2λ
∗
3i,1i ρ4λ

∗
3i,2i λ3i ρ6λ

∗
3i,4i

ρ3λ
∗
4i,1i ρ5λ

∗
4i,2i ρ6λ

∗
4i,3i λ4i


 ,

λ∗ji,ki =
√
λjiλki and λki = exp(β(λ)

k0 ) is the variance of random effects.

To allow heterogeneity between type of zygosity, we consider the model for residual
variance

log φkij = β
(φ)
k0 + β

(φ)
k5 x5i
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ex. National merit scholarship qualifying test - nmsqt(page184).csv

Random effects of social science and natural science scores show the strongest
correlation, 0.738. Correlation between English and mathematics scores has the
lowest value, 0.622.

For gender effect, mean have higher significant scores on mathematics, social science
and natural science, but women have higher significant scores on English.

Mother’s educational level is not significant at almost all subject’s scores. But
father’s educational level 4 and 6 are significant.

Family’s income level 5 has a significant positive effect and it has the highest
estimate.

In dispersion models for residual variances, we see that fraternal twins have greater
heterogeneity than identical twins.
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ex. National merit scholarship qualifying test - nmsqt(page184).csv

We see that the normal probability plots are approximately linear in the absence of
outliers. Thus, the fitted model is satisfactory.
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ex. NMSQT - Multivariate HGLM

381 / 569



ex. NMSQT - Multivariate HGLM
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ex. NMSQT - Multivariate HGLM
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ex. NMSQT - Multivariate HGLM
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ex. NMSQT - Multivariate HGLM
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Vascular cognitive impairment - cog(page188).csv

Lee, Nelder and Pawitan (2017) considered the Vascular Cognitive Impairment (VCI)
data.

The VCI measurements are increased among stroke patients, because cognitive
function is declined due to stroke. However, through an early intervention based on
the VCI, the cognitive function can be improved.

The purpose of the study is to examine the effects of 10 demographic and 10 acute
neuroimaging variables on the cognitive function in the ischemic stroke patients.

y1, y2, y3, y4 : the standardized VCI scores. Executive(y1), memory(y2),
visuoapatial(y3), and language(y4)

id : 372 patients
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Vascular cognitive impairment - cog(page188).csv

Variable Code Definition
Demographic variables
Age x1 integer of age/10
Gender x2 1(male), 0(female)
Edu x3 0(none), 1(elementary), 2(middle), 3(high), 4(over college)
HTN x4 1(hypertension), 0(none)
DM x5 1(diabetes mellitus), 0(none)
Af x6 1(atrial fibrillation), 0(none)
HxStroke x7 1(history of stroke), 0(none)
NIHSS x8 national institute of health stroke scale score at admission
VCINP x9 time interval from stroke onset to first K-VCIHS-NP
PCI x10 1(IQCODE ≥ 3.6), 0(otherwise)
Neuroimaging variables
AcuteLeft x11 Left or bilateral involement
AcuteMulti x12 lesion multiplicity in acute DWI imaging
AcuteCS x13 cortical involvement of acute lesions
ChrCS x14 cortical involement of chronic territorial infarction
PVWM x15 Periventricular white matter lesions (PVWM). 0(PVWM 0,1), 1(PVWM 2,3)
SCWM x16 Subcortical white matter lesions (SCWM). 0(SCWM 0,1), 1(SCWM 2,3)
LAC x17 The presence of lacunes
CMB x18 The presence of cerebral microbleeds

Medial temporal lobe atrophy (MTA)
MTA1 x19 1(MTA 2), 0(not 2)
MTA2 x20 1(MTA 3,4), 0(not 3,4)
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Vascular cognitive impairment - cog(page188).csv

Figure: Path diagram for the MDHGLM fitted to the VCI data
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Vascular cognitive impairment - cog(page188).csv

Multivariate HGLM

Consider a multivariate HGLM for four response variables for the t-th visit of the
i-th patient. For k = 1, 2, 3, 4,

ykit |vki ∼ N(Xitβ
(µ)
k + vki , φkit )

where Xit are covariates, φkit = exp(β(φ)
k0 ) is the residual variance.

The random effects follow a multivariate normal distribution :
v1i

v2i

v3i

v4i

 ∼ MVN




0
0
0
0

 ,


λ1i ρ1λ

∗
1i,2i ρ2λ

∗
1i,3i ρ3λ

∗
1i,4i

ρ1λ
∗
2i,1i λ2i ρ4λ

∗
2i,3i ρ5λ

∗
2i,4i

ρ2λ
∗
3i,1i ρ4λ

∗
3i,2i λ3i ρ6λ

∗
3i,4i

ρ3λ
∗
4i,1i ρ5λ

∗
4i,2i ρ6λ

∗
4i,3i λ4i


 ,

where λ∗ji,ki =
√
λjiλki and λki = exp(β(λ)

k0 ) is the variance of random effects.
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Vascular cognitive impairment - cog(page188).csv

We see many large outliers.
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Vascular cognitive impairment - cog(page188).csv

MDHGLM1

We consider a multivariate DHGLM (called MDHGLM1) that allows a heavy-tailed
distribution for ykit |vki (k = 1, 2, 3, 4) as follows. For k = 1, 2, 3, 4,

log φkit = β
(φ)
k0 + v (φ)

ki ,

where v (φ)
ki ∼ N(0, αk ) and λki = exp(β(λ)

k0 ).

MDHGLM2

We further consider a MDHGLM (called MDHGLM2) also allowing heavy-tailed
distribution for vki as follows. For k = 1, 2, 3, 4,

log φkit = β
(φ)
k0 + v (φ)

ki

log λki = β
(λ)
k0 + v (λ)

ki ,

where v (φ)
ki ∼ N(0, αk ) and v (λ)

ki ∼ N(0, τk ).
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Vascular cognitive impairment - cog(page188).csv
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Vascular cognitive impairment - cog(page188).csv

cAIC selects MDHGLM2 (cAIC=10437.4) as the best-fitting model among 3
models, because cAIC for the multivariate HGLM (cAIC=13260.0) and MDHGLM1
(cAIC=10548.1) are larger.

Wee see that most outliers in the multivariate HGLMs disappear by using
MDHGLM1 or MDHGLM2.

From the normal probability plots for v (λ)
ki , MDHGLM2 is prefered to the

MDHGLM1 because v̂ (λ)
ki leans more toward the line.

Thus, we select the MDHGLM2 as the final model, which gives robust estimators
against outliers as well as robustness against misspecification of distributional
assumptions on random effects.
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ex. VCI - MDHGLM2
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ex. VCI - MDHGLM2
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ex. VCI - MDHGLM2

397 / 569



ex. VCI - MDHGLM2
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ex. VCI - MDHGLM2

Model summary for response 1
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ex. VCI - MDHGLM2

Model summary for response 2
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ex. VCI - MDHGLM2

Model summary for response 3

401 / 569



ex. VCI - MDHGLM2

Model summary for response 4
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ex. VCI - MDHGLM2
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Mother’s stress and children’s morbidity - motherStress(page195).csv

Longitudinal data set from mother’s stress and children’s morbidity study (MSCM)
(Asar and Ilk, 2014).

In this MSCM study, 167 mothers and their preschool children were enrolled for 28
days.

Investigation of the serial dependence structures of the 2 longitudinal responses
suggested a weak correlation structure for the period of days 1∼16. Therefore, only
the period of days 17 ∼ 28 is considered in this dataset.

167× 12 = 2004 observations are in dataset.
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Mother’s stress and children’s morbidity - motherStress(page195).csv

stress = y1 : mother’s stress. 1(presence), 0(absence)
illness = y2 : children’s illness. 1(presence), 0(absence)
married : marriage status. 1(married), 0(other)
education : highest education level. 1(≥ high school), 0(< high school)
employed : employment status. 1(employed), 0(unemployed)
race : race. 1(non-white), 0(white)
csex : gender of children. 1(female), 0(male)
chlth : health statuses of children at baseline. 3(very good), 2(good), 1(fair),

0(poor/very poor)
mhlth : health statuses of mothers at baseline. 3(very good), 2(good), 1(fair),

0(poor/very poor)
housize : household size. 1(more than 3 people), 0(2-3 people)
bstress : rhe average stress values of the 1∼16 days
billness : rhe average illness values of the 1∼16 days
week : study time. week = (day-22)/7
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Mother’s stress and children’s morbidity - motherStress(page195).csv

Figure: Path diagram for the MDHGLM fitted to the mother’s stress and children’s morbidity data
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Mother’s stress and children’s morbidity - motherStress(page195).csv

Bivariate Bernoulli HGLM

yij = (y1ij , y2ij )ᵀ : bivariate binary responses for the j-th visit of the i-th family

v (µ)
i = (w (µ)

i , u(µ)
i )ᵀ : unobserved random effects for the i-th family

y1ij |v (µ)
i ∼ Bernoulli(p1ij ), y2ij |v (µ)

i ∼ Bernoulli(p2ij )

log
(

p1ij

1− p1ij

)
= Xijβ

(µ)
1 + w (µ)

i , log
(

p2ij

1− p2ij

)
= Xijβ

(µ)
2 + u(µ)

i

where v (µ)
i ∼ N(0,Σi ) with Σi =

(
λ1i ρ

√
λ1iλ2i

ρ
√
λ1iλ2i λ2i

)
and −1 < ρ < 1.

Thus, given v (µ)
i , y1ij and y2ij are independent.

We first consider three models with log λ1i = β
(λ)
10 and log λ2i = β

(λ)
20 .

M1 Independent model, having ρ = 0

M2 Random-effect model with a saturated variance-covariance matrix

M3 Shared random-effects model, having u(µ)
i = δw (µ)

i for some constant δ
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Mother’s stress and children’s morbidity - motherStress(page195).csv

The cAIC has values of 2653.7 (M1), 2428.9 (M2), and 2517.3 (M3).

Thus, cAIC selects the full model M2 among 3 models.

Robust bivariate DHGLM

In binary data, GLMMs are sensitive to a distributional assumption of random
effects, which is difficult to identify.

Thus, we consider the robust bivariate DHGLM by allowing random effects in the
variance for random effects.

M4 the same as M2, but having log λ1i = β
(λ)
10 + w (λ)

i and log λ2i = β
(λ)
20 + u(λ)

i

where w (λ)
i ∼ N(0, τ1) and u(λ)

i ∼ N(0, τ2).

The cAIC has value of 2103.9 for M4. Thus, cAIC selects M4 as the best-fitting
model.
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ex. MSCM - robust bivariate DHGLM (M4)
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ex. MSCM - robust bivariate DHGLM (M4)
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ex. MSCM - robust bivariate DHGLM (M4)

Model summary for response 1
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ex. MSCM - robust bivariate DHGLM (M4)

Model summary for response 2
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ex. Primary biliary cirrhosis - pbc(page206).csv

Longitudinal data set in the R package JM (Komarek, 2015) from a Mayo Clinic trial
on 312 patients with primary biliary cirrhosis (PBC) conducted in 1974-1984.

There are 1 to 5 visets per subject performed at time of months. At each visit,
measurements of 3 response variables are observed.

Komarek (2015) used 260 subjects known to be alive at 910 days of follow-up, and
only the longitudinal measurements by this point will be considered.

subject : 260 subjects

day : time of day = month×30.4375

month = x : time of month

lbili = y1 : continuous logarithmic bilirubin

platelet = y2 : discrete platelet count

spiders = y3 : dichotomous indication of blood bessel malformations
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ex. Primary biliary cirrhosis - pbc(page206).csv

Figure: Path diagram for the MDHGLM fitted to the PBC data
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ex. Primary biliary cirrhosis - pbc(page206).csv

Multivariate model for 3 responses

We consider a multivariate model for three response variables with a covariate xit for
the tth visit of the ith patient.

y1it |v1i ∼ N(µ1it , φ1i )

with µ1it = β
(µ)
10 + β

(µ)
11 xit + v (µ)

1i and log φ1i = β
(φ)
10 + β

(φ)
11 xit

y2it |v2i ∼ N(µ2it , φ2i )

with µ2it = β
(µ)
20 + β

(µ)
21 xit + v (µ)

2i and log φ2i = β
(φ)
20 + β

(φ)
21 xit

y3it |v3i ∼ Bernoulli(p3it )

with log
(

p3it

1− p3it

)
= β

(µ)
30 + β

(µ)
31 xit + v (µ)

3i

where the random effects follow multivariate normal distribution :v (µ)
1i

v (µ)
2i

v (µ)
3i

 ∼ MVN

(0
0
0

)
,

 λ1 ρ1λ∗1,2 ρ2λ∗1,3
ρ1λ∗2,1 λ2 ρ3λ∗2,3
ρ2λ∗3,1 ρ3λ∗3,2 λ3

 with λ∗j,k =
√
λjλk .
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ex. Primary biliary cirrhosis - pbc(page206).csv

Under the multivariate HGLM, we see that many large outliers exist.
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ex. Primary biliary cirrhosis - pbc(page206).csv

Multivariate DHGLM allowing heavy-tailed distributions for y1 and y2

log φ1i = β
(φ)
10 + β

(φ)
11 xit + v (φ)

1i with v (φ)
1i ∼ N(0, α1)

log φ2i = β
(φ)
20 + β

(φ)
21 xit + v (φ)

2i with v (φ)
2i ∼ N(0, α2)

cAIC shows that DHGLM (cAIC=13068.1) is better fit than HGLM (cAIC=19776.5).

We can see that most outliers in multivariate HGLM disappear allowing heavy-tailed
distribution for y1 and y2.

Thus, we select DHGLM which gives robust estimators against outliers.

417 / 569



ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2

Model summary for response 1
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2

Model summary for response 2
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2

Model summary for response 3
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ex. PBC - MDHGLM allowing heavy-tailed distributions for y1and y2
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ex. Missing data mechanism - sch 2(page209).csv

Review : DHGLM with ignorable missingness

In Chapter 6, we analyzed the schizophrenic behavior data from an eye-tracking
experiment with a visual target moving back and forth along a horizontal line on a
screen (Rubin and Wu, 1997).

We assume that the missing data are missing at random (MAR).

We proposed using a DHGLM with

yij = β
(µ)
0 + x1ijβ

(µ)
1 + x2ijβ

(µ)
2 + tjβ

(µ)
3 + schiβ

(µ)
4 + schi · x1ijβ

(µ)
5

+ schi · x2β
(µ)
6 + v (µ)

i + eij

where v (µ)
i ∼ N(0, λ) is the subject random effect, and eij ∼ N(0, φ).

log(φi ) = β
(φ)
0 + schiβ

(φ)
1 + schi v (φ)

i

where v (φ)
i ∼ N(0, τ) are the dispersion random effects.

We call this model DI (DHGLM with ignorable missingness).
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ex. Missing data mechanism - sch 2(page209).csv

DN : DHGLM with non-ignorable missingness

According to the physicians, missingness could be caused by eye blinks which are
related to eye movements (responses) (Goossens and Opstal, 2000).

This leads to the following model for missing data.

δij = y2ij : indicator variables. 1(missing), 0(otherwise)

η = Φ−1(pij ) = δ0 + x1ijδ1 + x2ijδ2 + sexiδ3 + schiiδ4 + sexi · x1ijδ5

+ sexi · x2ijδ6 + sexi · schiiδ7 + ρy∗ij

where pij = P(δij = 1).

We can consider the model DI as well as DN with the probit model having two
responses : y1 for a continuous response and y2 for a missing indicator.

DI DHGLM with ignorable missingness where ρ = 0

DN DHGLM with non-ignorable missingness where ρ , 0
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ex. Missing data mechanism - sch 2(page209).csv

The negative value of ρ̂ supports the physicians’ opinions that lower values of the
response are more likely to be missing at each cycle.

However, the conclusions concerning non-ignorable missingness depend crucially on
untestable distributional assumptions. Thus, sensitivity analysis has been
recommended.

Fortunately, the analysis of the responses in there data indicates that they are not
sensitive to the assumptions about the heavy tails or the missing mechanism (Yun
and Lee, 2006).
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ex. Law school admission - factor(page215).csv

Lee, Nelder, and Pawitan (2017) considered law school admission data of Bock and
Lieberman (1970), consisting of 6 items for law school admission test with 350
subjects.

y1 ∼ y6 : items for law school admission test. 1(correct), 0(not correct)

subject, x : 350 subjects

Figure: Path diagram for the binary 2-factor model
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ex. Law school admission - factor(page215).csv

Binary 2-factor model

πij = P(yij = 1|v i )

Consider a binary 2-factor model.

logit(πi ) = β0 + Λv i

where πi = (πi1, · · · , πi6)ᵀ and β0 = (β01, · · · , β06)ᵀ. Respectively,

Λᵀ =
(

1 λ2 λ3 0 0 0
0 0 0 1 λ5 λ6

)

and v i = (vi1, vi2)ᵀ ∼ BVN
(

0,
(
γ11 γ12

γ21 γ22

))
.
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ex. Law school admission - factor(page215).csv

1-factor model

We also consider 1 factor model, which is equivalent to assume the correlation
between v1i and v2i being ±1.

logit(πi ) = β0 + Λw1i

where

Λᵀ =
(

1 λ2 λ3 λ4 λ5 λ6
)

and w1i ∼ N(0, γ11).

1-factor model has cAIC = 2371.7 which is less than 2-factor model (cAIC =
2548.6). Thus, cAICs clearly prefers the 1-factor model.
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ex. Low school admission - binary 2-factor model
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ex. Low school admission - binary 2-factor model
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ex. Low school admission - binary 2-factor model

Binary 2-factor model summary
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Chapter 8. Survival Analysis

In this chapter we study the analysis of incomplete data, caused by censoring in
event-time survival data.

Cox’s proportional hazards model is widely used for the analysis of survival data.

Frailty models with a non-parametric baseline hazard extend proportional hazards
model by allowing random effects in hazards and have been widely adopted for the
analysis of survival data (Hougaard, 2000; Duchateau and Janssen, 2008).

Using h-likelihood theory we can show tha Poisson HGLM algorithms can be used to
fit these models.

Ha, Lee, and Song (2001) showed that with the h-likelihood it is easy to eliminate
nuisance parameters by using a plug-in method and a fast estimation algorithm can
thereby be used.

Either a log-normal or gamma distribution can be used as the frailty distribution.
Therefore, normal and log-gamma distribution can be adopted for the log frailties.
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Frailty models

Data is consist of right censored observations from q subjects, with ni observations
each (i = 1, · · · , q).

n =
∑

i ni : total sample size

Tij : survival time for the j-th observation of the i-th subject (j = 1, · · · ni ).

Cij : corresponding censoring time

yij = min{Tij ,Cij}, δij = I(Tij ≤ Cij )

ui : unobserved frailty for the i-th subject

The conditional hazard function of Tij is of the form

λij (t|ui ) = λ0(t) exp(xᵀij β)ui

where λ0(·) is an unspecified baseline hazard function and β = (β1, · · · , βp)ᵀ is a
vector of regression parameters for the fixed covariates xij .

Here, the term xᵀitβ doesn’t include an intercept term because of identifiability.
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Frailty models

We assume that the frailties ui are i.i.d. random variables with a frailty parameter α.

We can assume gamma and log-normal distributions for ui .

(i) gamma frailty with E(ui ) = 1 and var(ui ) = α

(ii) log-normal frailty having vi = log ui ∼ N(0, α)

Multi-component frailty models

X : n × p model matrix

Z (r) : n × qr model matrices correspong to the frailties v (r)

v (r), v (l) are independent for r , l

Xβ + Z (1)v (1) + Z (k)v (k) + · · ·+ Z (k)v (k)

Z (r) has indicator values such that Z (r)
st = 1 if observation s is a member of subject t

in the r -th frailty component, and 0 otherwise.
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ex. Kidney infection - kidney(page224).csv

Data from study on the recurrence of infections in kidney patients who are using a
portable dialysis machine (McGilchrist and Aisbett, 1991).

Times until the 1st and 2nd recurrences of kidney infection in 38 patients are
recorded.

The catheter is later removed if infection occurs and can be removed for other
reasons, which we regard as censoring (about 24%).

id : 38 patients

time : time until infection since the insertion of the catheter

status : censoring indicator. 1(infection), 0(censoring)

age : age of patient

sex : 1(male), 2(female)

disease : disease types. GN, AN, PKD, other

frail : estimated frailty (McGilchrist and Aisbett, 1991)
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ex. Kidney infection - kidney(page224).csv

Frailty model with 2 covariates

We fit frailty models with 2 covariates, the sex and age.

The survival times for the same patient are likely to be correlated because of a shared
frailty describing the common patient’s effect. So we consider patient as the frailty.

The standard shared frailty model assumes that censoring times are independent of
event times within clusters.

For further discussions in survival analysis, see Ha, Jeong, and Lee (2017).
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ex. Kidney infection - Kaplan-Meier estimate
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ex. Kidney infection - Kaplan-Meier estimate
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ex. Kidney infection - Kaplan-Meier estimate
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ex. Kidney infection - log-normal frailty model
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ex. Kidney infection - log-normal frailty model

Log-normal frailty model summary
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ex. Kidney infection - log-normal frailty model
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ex. Kidney infection - gamma frailty model
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ex. Kidney infection - gamma frailty model

Gamma frailty model summary
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ex. Kidney infection - gamma frailty model
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ex. Rat - rats(page228).csv

Dataset is based on a tumorigenesis study of 50 litters of female rats (Mantel et al.,
1977).

For each litter, 1 rat was selected to receive the drug and the other 2 rats were
placebo-treated controls.

Death before occurrence of tumor yields a right-censored observation. 40 rats
developed a tumor, leading to censoring of about 73%.

The survival times for rats in a given litter may be correlated due to a random effect
representing shared genetic or environmental effects.

litter : 50 litters

rx : 1(drug), 0(placebo)

time : time to development of tumor or death (weeks)

status : censoring indicator. 1(occurence), 0(death, censored)
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ex. Rat - rats(page228).csv

Log-normal frailty model

We fit models with 1 covariate, the rx. Also, we consider litter as the frailty.

From the results, the rx group has significantly higher risk than the control group.

The variance estimate of the frailty is α̂ = 0.4272 (SE=0.4232).

Although we report the SE of the α, one should not use it for testing the absence of
frailty α = 0 (Vaida and Xu, 2000).

A null hypothesis is on the boundary of the parameter space, so that the critical
value of an asymptotic (χ2(0) + χ2(1))/2 distribution is 2.71 at 5% significant level
(Lee, Nelder, and Pawitan, 2017; Ha, Su;vester. Legrand, and MacKenzie, 2011).

The difference in deviance −2pβ,υ(hp) between Cox’s PHM without frailty (364.15)
and log-normal frailty model (362.56) is 1.59(< 2.71), indicating that the frailty
effect is non-significant.
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ex. Rat - rats(page228).csv

For the selection of a model between non-nested models, we may use 3 AIC criteria
(Lee, Nelder, and Pawitan, 2017; Ha, Lee, and MacKenzie, 2007; Donohue,
Overholser, Xu, and Vaida, 2011).

cAIC = − 2h0 + 2dfc

mAIC = − 2pυ(hp) + 2dfm

rAIC = − 2pβ,υ(hp) + 2df r

where h0 = `∗0 .

dfc = trace{D−1(hp , (β, υ))D(h0, (β, υ))} is an effective degrees of freedom
adjustment for estimating the fixed and random effects. It is computed by using the
Hessian matrices D(hp , (β, υ)) = −∂2hp/∂(β, υ)2, D(h0, (β, υ)) = −∂2h0/∂(β, υ)2.

dfm is the number of fixed parameters.

df r is the number of dispersion parameters (Ha et al., 2007).
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ex. Rat - log-normal frailty model
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ex. Rat - log-normal frailty model

Log-normal frailty model summary
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ex. Rat - log-normal frailty model
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ex. Rat - gamma frailty model
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ex. Rat - gamma frailty model

Gamma frailty model summary
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ex. Rat - gamma frailty model
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ex. CGD infection - cgd(page230).csv

Dataset consists of a placebo-controlled randomized trial of gamma interferon
(rIFN-g) in the treatment of chronic granulomatous disease (CGD) (Fleming and
Harrington, 1991).

128 patients from 13 centers were tracker for around 1 year.

The survival times are the recurrent infection times of each patient.

Censoring occurred at the last observation for all patients, except one, who
experienced a serious infection on the date he left the study.

About 63% of the data were censored.

The recurrent infection times for a given patient are likely to be correlated. Also,
each patient belongs to the 1 of the 13 centers.

The correlation may be attributed to patient effect and center effect.
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ex. CGD infection - cgd(page230).csv

tstart - tstop : recurrent infection times of each patient or censoring time

id : 128 patients

center : 13 centers

treat : rIFN-g or placebo

status : censoring indicator. 1(infection observed), 0(censored)

random : data of randomization

sex, age, height, weight : information about patients at study entry

inherit : pattern of inheritance

steroids : use of steroids at study entry. 1(yes), 0(no)

propylac : use of propylac antibiotics at study entry. 1(yes), 0(no)

hos.cat : categorization of the centers into 4 groups

enum : observation number within subject
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ex. CGD infection - cgd(page230).csv

Multilevel log-normal frailty model

We fit a multilevel log-normal frailty with 2 frailties and a single covariate,
treatment. Here, the 2 frailties are random center and patient effects.

Xβ + Z (1)v (1) + Z (2)v (2)

v (1) ∼ N(0, α1Iq1 )

v (2) ∼ N(0, α2Iq2 )

where v (1) is center frailty, and v (2) is patient frailty.

For testing the need for a random component (α1 = 0 or α2 = 0), we use the
deviance −2pβ,υ(hp), and fit the following 4 models.

M1 Cox’s model without frailty (α1 = 0, α2 = 0) : −2pβ,υ(hp) = 707.48

M2 model without patient effect (α1 > 0, α2 = 0) : −2pβ,υ(hp) = 703.66

M3 model without center effect (α1 = 0, α2 > 0) : −2pβ,υ(hp) = 692.99

M4 multilevel model (α1 > 0, α2 > 0) : −2pβ,υ(hp) = 692.95
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ex. CGD infection - cgd(page230).csv

The deviance difference between M3 and M4 (0.04 < 2.71 = χ2
0.10(1)) indicates the

absence of the random center effects.

The deviance difference between M2 and M4 (10.71) indicates the necessity of
random patient effects.

The deviance difference between M1 and M3 (14.49) indicates the becessity of
random patient effect even without random center effects.

cAIC, mAIC and rAIC also choose M3 among the M1 - M4.
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ex. CGD - multilevel log-normal frailty model (M4)
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ex. CGD - multilevel log-normal frailty model (M4)

Model summary for M4
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ex. CGD - multilevel log-normal frailty model (M4)
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ex. Bladder cancer - bladder(page232).csv

Therneau and Lumley (2015) reported data on recurrences of bladder cancer, which
were used to demonstrate methodology for recurrent event modeling (Wei et al.,
1989).

85 patients were assigned to either thiotepa or placebo, and reports up to 4
recurrences for any patients.

start : start of interval (0 or previous recurrence time) (month)

stop : tumor recurrence or censoring time (month)

event : censoring indicator. 1(recurrence), 0(otherwise)

id : 85 patients

rx : treatment. 1(placebo), 2(thiotepa)

number : initial number of tumours. (8=8 or more)

size : size of largest initial tumor (cm)

enum : observation number within subject
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ex. Bladder cancer - bladder(page232).csv

Log-normal frailty models

We fit log-normal frailty models with 3 covariates, the rx, the number, and the size
using HL(1,1).

The thiotepa treatment has a marginally significant lower recurrent risk than in the
placebo group controlling initial number of tumors.

The deviance difference between Cox’s PHM (1029.4) and log-normal frailty model
(1024.1) is 5.3(> 2.71), indicating that the frailty effect is significant (p=0.011).

Gamma frailty model

The results from gamma frailty model using HL(1,2) are slightly different to those of
log-normal frailty, particularly for estimation of β.

AIC indicates that log-normal and gamma frailty models are better than Cox’s PHM.

Between log-normal and gamma frailty models, AICs indicate that the log-normal
frailty model is better than the gamma frailty model.
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ex. Bladder - log-normal frailty model
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ex. Bladder - log-normal frailty model

Log-normal frailty model summary
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ex. Bladder - log-normal frailty model
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Grouped duration model

Ti : duration time until occurence of event for the i-th individual

Ti is not observed exactly, but we have information that the event happened in a
specific interval.

The durations are observed at the t-th time point at (t = 1, · · · , r) with the a0 = 0.

dit =
{

1 i-th individual experienced event during the t-th time interval
0 o.w

We considered the binary variable dit as the response variable with the corresponding
xit observed at the (t − 1)-th time point at−1.

Figure: Structure of grouped duration data
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Grouped duration model

Given the random effect vi , the conditional hazard rate at time Ti = u for
at−1 ≤ u < at with t = 1, · · · , r of the form

λ(u|vi ) = λ0(u) exp(x>ij β + vi )

λ0(·) : baseline hazard function

β : regression coefficients of covariates of interests

xit : risk factors observed over multiple time points (t = 1, · · · , r)

vi : frailties of individuals

Ha, Jeong, and Lee (2017) showed that the responses dit follow the Bernoulli HGLM
with the complementary log-log link

log(− log(1− pit )) = γt + x>it β + vi

where pit = Pr(dit = 1|vi ) and γt = log
∫ at

at−1
λ0(u)du.
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ex. Smoke onset - SmokeOnset.csv

For 1556 students in the Los Angels area, onset of smoking is oberved at each of 3
timepoints a1, a2, and a3.

a1 : starting time for investigation

a2 : 1-year follow-up and a3 : 2-year follow-up

These event times are grouped at the 3 intervals [0, a1), [a1, a2), [a2, a3).

For each student, we generate the following 4 responses.

(i) di1 = 1 if he/she started smoking at intervals at [0, a1)
(smkonset = 1)

(ii) (di1, di2) = (0, 1) if he/she started smoking at intervals at [a1, a2)
(smkonset = 2)

(iii) (di1, di2, di3) = (0, 0, 1) if he/she started smoking at intervals at [a2, a3)
(smkonset = 3)

(iv) (di1, di2, di3) = (0, 0, 0) if he/she had not smoked until a3 (censored)
(smkonset = 3)
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ex. Smoke onset - SmokeOnset.csv

school, class, student : 28 school, 134 class, 1556 students

smkonset : i-th time interval when the event occur

event : censoring indicator. 1(smoked), 0(otherwise)

int : constant value 1

SexMale : gender of student. 1(male), 0(female)

cc : indicating whether the school was randomized to a social-resistance classroom
curriculum. 1(yes), 0(no)

tv : indicating whether the school was randomized to a media (television) intervention.
1(yes), 0(no)

cctv : cc×tv
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ex. Smoke onset - SmokeOnset.csv

Grouped duration model

3 covariates are considered SexMale, cc, tv.

Deviance diffence between Cox’s PHM (40189.8) and log-normal frailty model
(40123.6) is 66.2(> 2.71), indicating the necessity of frailty.

From the output, male has higher risk for smoking than female.

Schools with cc or tv give lower risk for smoking to their students.
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ex. Smoke onset - group duration model
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ex. Smoke onset - group duration model

Group duration model summary
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ex. Smoke onset - group duration model
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Competing risk models

For i = 1, · · · , q, j = 1, · · · , ni , and k = 1, · · · ,K ,

Tijk : time to type k for the j-th observation in the i-th cluster

Cij : independent censoring time

Observed event yij = min(Tij1,Tij2, · · · ,TijK ,Cij )

Event indicator δijk = I(yij = Tijk )

The cause-specific hazard function conditional on the log-frailty vi = (vi1, · · · , viK ) is

λijk (t|vi ) = λ0k (t) exp(x>ij βk + vik )

where λ0k (t) is the unspecified baseline hazard function for event type k.

βk = (βk1, · · · , βkp)ᵀ : fixed parameters for event type k

xij : fixed covariates

vik : random effect for type k event in cluster i
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Competing risk models

Consider K = 2.

Event times from cause 1 and 2 would follow a cause-specific proportional hazards
model

λij1(t|vi ) = λ01(t) exp(xᵀij β1 + vi1)

λij2(t|vi ) = λ02(t) exp(xᵀij β2 + vi2)

where vi1 and vi2 might be correlated.

In the traditional cause-specific analysis, patients who failed from cause 2 are
treated as censored for the analysis of type 1 events, which ignores a potential
correlation between vi1 and vi2.

Competing risks data usually arise when an occurrence of a competing event
prevents the occurrence of the event of interest.

Treating the competing event as a censoring can lead to biased results (Pepe and
Mori, 1993).
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ex. Simulated data - simuldata(page240).csv

We used a simulated data set generated in the R package crrSC (Zhou et al., 2012,
2015).
The data consists of a data frame with 200 observations.

ftime = time : event time
fstatus = status : event type. 1(event of interest, 112 observations), 2(competing event,

47 observations), 0(censoring, 41 observations)
x = z : binary covariate generated with probabilty of 0.5
ID : 100 cluster with each cluster size 2

Figure: Path diagram for the competing risk frailty model
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ex. Simulated data - simuldata(page240).csv

Cause-specific hazard frailty model

Consider the cause-specific hazard frailty model (Ha, Jeong, and Lee, 2017).

λijk : conditional hazard function for the j-th observation in the i-th cluster that
failed from cause k (given a shared log-frailty vi )

λij1(t|vi ) = λ01(t) exp(x>ij β1 + vi )

λij2(t|vi ) = λ02(t) exp(x>ij β2 + γvi )

where vi ∼ N(0, σ2)

If γ > 0 [γ < 0], a cluster with higher frailty in type 1 event will experience an eariler
[delayed] type 2 events (Huang and Wolfe, 2002).

γ = 1 : the effect of the frailty is identical for both events.

γ = 0 : two event rates are not associated.

The estimate of shared parameter γ̂ = −1.218 shows a negative association between
2 events.
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ex. Simulated data - competing risk model
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ex. Simulated data - competing risk model

Competing risk model summary
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ex. Simulated data - competing risk model
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H-likelihood theory for the frailty model

The h-likelihood gives a straightforward way of handling non-parametric baseline hazards.
The h-likelihood is defined by

h = h(β, λ0, α) = `0 + `1

`0 =
∑

ij log f (yij , δij |ui ;β, λ0) =
∑

ij δij{log λ0(yij ) + ηij} −
∑

ij Λ0(yij ) exp(ηij )

`1 =
∑

i log f (vi ;α).

`0 =
∑

ij

log
(
{S(yij )}1−δij {f (yij )}δij

)
=
∑

ij

log
(

exp(−Λ(yij )){λ(yij )}δij )
)

=
∑

ij

{−Λ(yij ) + δij log λ(yij )}

=
∑

ij

−Λ0(yij ) exp(ηij ) +
∑

ij

δij{log λ0(yij ) + ηij}
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H-likelihood theory for the frailty model

The functional form of λ0(t) is unknown. Hence, we consider Λ0(t) to be a step function
with jumps at the observed event time (Breslow, 1972).

Λ0(t) =
∑

k:y(k)≤t

λ0k

where where y(k) is the k-th smallest distinct event time among the yij ’s, and
λ0k = λ0(y(k)).
Ha, Lee and Song(2001) proposed the use of the profile h-likelihood with λ0 eliminated,
r∗ := h|

λ0=λ̂0
, given by

r∗ =r∗(β, α) = `∗0 + `1

where `∗0 =
∑

ij log f ∗(yij , δij |ui ;β, λ̂0) does not depend on λ0. And

λ̂0k (β, v) =
d(k)∑

(i,j)∈R(k)
exp(ηij )

are solutions of the estimating equations, ∂h/∂λ0k = 0. d(k) is the number of events at y(k)
and R(k) = {(i , j) : yij ≥ y(k)} is the risk set at y(k).
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H-likelihood theory for the frailty model

Therneau and Grambsch (2000) and Ripatti and Palmgren (2000) proposed h-likelihood,
called penalized partial likelihood (PPL) hp .

hp(β, v , α) =
∑

ij

δijηij −
∑

k

d(k) log

∑
ij∈R(k)

exp(ηij )

+ `1

Ha, Lee, and Song (2001) and Ha et al. (2010) have shown that r∗ is proportional to the
PPL hp .

r∗ =
∑

k

d(k) log λ̂0k +
∑

ij

δijηij −
∑

k

d(k) + `1

= hp +
∑

k

d(k){log d(k) − 1}

where
∑

k d(k){log d(k) − 1} is a constant which does not depend upon unknown
parameters.
Thus, the h-likelihood procedure for HGLMS of Lee and Nelder (1996, 2001) can be
extended to frailty models based on hp (Ha et al., 2010).
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Estimator of baseline hazard function, λ0(t)

When there is no such random effects,

Lp(h0(t)) =

[
D∏

i=1

λ0(y(i)) exp(βT X(i))

]
exp

[
−

n∑
j=1

Λ0(yj ) exp(βt Xj )

]
Let λ0i = λ(y(i)) (i = 1, · · · ,D) and Λ0(yj ) =

∑
y(i)≤yj

λ0i =
∑D

i=1 Rj (y(i))λ0i . Then,

Lp(λ01, λ02, · · · , λ0D) =

[
D∏

i=1

λ0i exp(β>X(i)) exp

[
−λ0i

n∑
j=1

Rj (y(i)) exp(β>Xj )

]]
The maximum likelihood estimator of λ0i is given by

λ̂0i =
1∑n

j=1 Rj (y(i)) exp(β>Xj )

Λ̂0(t) =
∫ t

0

∑n
i=1 dNi (u)∑n

j=1 Rj (u) exp(β>Xj )

where Ni (t) counts the number of events in [0, t] for unit i and
∑

Ni (t) = N(t).
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Estimator of baseline hazard function, λ0(t)

Note that
n∑

j=1

λ̂0(yj ) exp(β>Xj ) =
n∑

j=1

∫ ∞
0

I(yj ≥ t) exp(βt Xj )

∑n
i=1 dNi (t)∑n

i=1 Ri (t) exp(β>Xj )

=
∫ ∞

0
dN(t)

Then,

Lp(λ̂0(t)) =

[
D∏

i=1

λ0(y(i)) exp(βT X(i))

]
exp

[
−

n∑
j=1

Λ0(yj ) exp(βt Xj )

]

=

[
D∏

i=1

λ̂0(y(i)) exp(βT X(i))

]
exp
[
−
∫ ∞

0
dN(t)

]

488 / 569



Estimator of baseline hazard function, λ0(t)

Note that

`0 =
∑

ij

{δij{log λ0(yij ) + ηij} − Λ0(yij ) exp(ηij )}

=
∑

k

d(k) log λ0k +
∑

i,j

δijηij −
∑

k

λ(0k)

 ∑
(i,j)∈R(y(k))

exp(ηij )


Plugging in λ̂0k (β, v) = d(k)∑

(i,j)∈R(k)
exp(ηij )

,

`∗0 =
∑

k

d(k) log λ̂0k +
∑

i,j

δijηij −
∑

k

d(k)

.
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Chapter 9. Joint Models

In this chapter, we consider data analysis for multivariate responses where at least
one response is time-to-event.

Separated analysis ignoring the inherent association between the outcomes from the
subject can lead to a biased result (Guo and Carlin, 2004).

Thus, joint modeling has been widely studied (Henderson et al. 2000; Ha et al.,
2003; Rizopoulos, 2012).

An unobserved random effect can be used to account for the association among
multivariate outcomes.

For the analysis of such dataset, the h-likelihood approach is very effective.
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ex. Serum creatinine - scr(page254).csv

Dataset from the clinical study to investigate the chronic renal allograft dysfunction
in renal transplants (Sung et al., 1998).

The renal function is evaluated from the serum creatinine (sCr) values. Since the
time interval between the consecutive measurements differs from patient to patient,
we focus on the mean creatinine levels over 6 months.

A Graft-loss time is observed from each patient.

During the study period, there were 13 graft losses due to the kidney dysfunction.
For other remaining patients, we assumed that the censoring occurred at the last
follow-up time (about 88%).
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ex. Serum creatinine - scr(page254).csv

id : 112 patients

month : visiting time (month)

cr : serum creatinine value (mg/dL)

sex : gender. 1(male), 0(female)

age : age of patients

icr : reciprocal of serum creatinine value = 1/cr

sur time : graft-loss time (month)

status : censoring indicator. 1(occurrence), 0(censoring)
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ex. Serum creatinine - scr(page254).csv

We are interested in investigating the effects of covariates over 2 response (sCr
values and a graft-loss time).

Ha et al. (2003) considered month, sex and age as covariates for sCr. Also they
considered sex and age as covariates for the loss time.

We consider the standard mixed linear model we use values 1/sCr as responses yij .

Figure: Path diagram for the joint model for repeated measures and survival time
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ex. Serum creatinine - scr(page254).csv

Joint model

For the 1/sCr values, consider a linear mixed model

yij = xᵀ1ijβ + v1i + eij

where x1ij are covariates, v1i ∼ N(0, σ2
v1), and eij ∼ N(0, σ2

e ).

For graft-loss time ti , consider a frailty model with the conditional hazard function

λ(ti |v1i ) = λ0(ti ) exp(xᵀ2iδ + γv1i )

where λ0(t) is the baseline hazard function, x2i are between-subject covariates, and
γ is the shared parameter.

Ha et al. (2003) considered a Weibull model for the baseline hazard function where
λ0(ti ) = τ tτ−1 with a shape parameter τ .

Also, we can fit the non-parametric baseline hazard model.

The values of cAIC show that non-parametric baseline hazard model is preferred to
the Weibull baseline hazard model.
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ex. Serum creatinine - scr(page254).csv

Separate model

We can fit 2 random effect models separately with LMM and following frailty model.

yij = xᵀ1ijβ + v1i + eij

where x1ij are covariates, v1i ∼ N(0, σ2
v1), and eij ∼ N(0, σ2

e ).

λ(ti |v2i ) = λ0(ti ) exp(xᵀ2iδ + v2i )

where v2i ∼ N(0, σ2
v2).

The cAIC can be computed by adding cAIC from two models.

We can see that joint models are preferred to corresponding separate models.

495 / 569



ex. Serum creatinine - Joint model (non-parametric baseline hazard)
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ex. Serum creatinine - Joint model summary
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ex. Serum creatinine - Random effect inferences
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ex. AIDS - aids(page257).csv

Data were collected in a recent clinical trial to compare the efficacy and safety of 2
antiretroviral drugs in treating patients who had failed or were intolerant of
zidovudine (AZT) therapy (Rizopoulos, 2015).

467 HIV-infected patients were enrolled and randomly assigned to receive either
didanosine (ddI) or zalcitabine (ddC).

The number of CD4 cells per mm3 of blood were recirded at study entry, and again
at the 2, 6, 12, 18 month visits.

Times to death were also recorded with a 40% censoring rate.
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ex. AIDS - aids(page257).csv

patient : 467 patients

time : the time to death of censoring

death : censoring indicator. 1(death), 0(censoring)

CD4 : the CD4 cells count

month : recorded time points

drug : ddC(zalcitabine), ddI(didanosine)

gender : male, female

prevOI : AIDS diagnosis at study entry

AZT : intolarance(AZT intolarance), failure(AZT failure)

start : start of time in the first interval

stop : end of time in the first interval

event : 1(death in the first interval), 0(censoring)

y : CD41/2
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ex. AIDS - aids(page257).csv

Rizopoulos (2015) considered a joint model for the square root of CD4 value yij for
the j-th visit and the time to death ti of the i-th patient.

We consider month and drug as covariates for yij , and drug for ti .

Figure: Path diagram for the joint model for repeated measures and survival time on AIDS data
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ex. AIDS - aids(page257).csv

Joint model

For the response yij , consider a linear mixed model.

yij = xᵀ1ijβ + v1i + eij

where xᵀ1ij are covariates, v1i ∼ N(0, σ2
v1) and eij ∼ N(0, σ2

e ).

For death time ti , condider a frailty model with the conditional hazard function

λ(ti |v1i ) = λ0(ti ) exp(xᵀ2iδ + γv1i )

where λ0(t) is the baseline hazard function, xᵀ2i are between-subject covariates and γ
is the shared parameter.

Rizopoulos (2015) considered a Weibull model for the baseline hazard function
where λ0(ti ) = τ tτ−1 with a shape parameter τ .

We can also fit a non-parametric baseline hazard model.

The values of cAIC show that the Weibull baseline hazard model is preferred to the
non-parametric baseline hazard model.
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ex. AIDS - aids(page257).csv

Separate model

We can fit 2 random effect models separately with following frailty model.

yij = xᵀ1ijβ + v1i + eij

where xᵀ1ij are covariates, v1i ∼ N(0, σ2
v1) and eij ∼ N(0, σ2

e ).

λ(ti |v2i ) = λ0(ti ) exp(xᵀ2iδ + v2i )

where v2i ∼ N(0, σ2
v2).

We can see that joint models are preferred to corresponding separate models.
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ex. AIDS - Joint model (Weibull)
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ex. AIDS - Joint model summary
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ex. AIDS - Random effect inferences
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

In chapter 7, we analyzed the PBC data available in the R package JM (Rizopoulos,
2015).

We fit joint model for the logarithm of serum bilirubin (mg/dL) yij for the j-th visit
and the time to event ti of the i-th event.

We consider year, sex, and drug as covariates for yij .

We also consider sex and drug for ti .

Figure: Path diagram for the joint model for repeated measures and competing event time on
PBC data
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

id : 312 patients

serBilir : serum bilirubin (mg/dL)

y : serBilir1/2

years : number of years between registration and the earlier of death, transplantion, or
study analysis time

status : censoring indicator. 2(transplanted), 1(dead), 0(alive)

year : number of years between enrollment and this visit date

drug : 1(D-penicillamine), 0(placebo)

sex : gender of patients. 1(male), 0(female)
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

Variable Description
ascites Yes or No
hepatomegaly Yes or No
spiders Yes or No
edema No edema, edema no diuretics, edema despite diuretics
serChol serum cholesterol (mg/dL)
albumin albumin (mg/dL)
alkaline alkaline phosphatase in
SGOT SGOT (U/ml)
platelets platelets per cubic ml / 1000
prothrombin prothrombin time (sec)
histologic histologic stage of disease
status2 1(death), 0(transplanted or alive)
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

Joint Model

For yij , consider a linear mixed model.

yij = xᵀ1ijβ + vi + eij

where xᵀ1ij are covariates, vi ∼ N(0, σ2
v ) and eij ∼ N(0, σ2

e ).

For the time event ti , consider the cause-specific hazard frailty model for competing
risk.

Given a shared log-frailty v1i , the conditional hazard function λik for the i-th patient
that failed from cause k (k = 1, 2) can be expressed as

λi1(t|vi ) = λ01(ti ) exp(xᵀ2iδ1 + γ1vi )

λi2(t|vi ) = λ02(ti ) exp(xᵀ2iδ2 + γ2vi )

where λ0k (t) is an unspecified baseline hazard function for cause k, δk is regression
parameters for cause k.
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ex. Primary biliary cirrhosis continued - pbc(page260).csv

The estimates of shared parameters γ̂1 = 1.271 and γ̂2 = 1.189 show a positive
associations between yij and 2 events.

The visiting year effect for yij is positively very significant.

The effect of drug is not significant for yij and for death event, but it is negatively
significant for trasplanted event.

The effect of sex is positively significant for yij and for death event, but it is not
significant for transplanted event.

However, when we fit the competing risk model for ti removing response yij , the
effect of drug is not significant for transplanted event.
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ex. PBC - Joint model with competing risk
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ex. PBC - Joint model summary
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ex. PBC - Random effect inferences
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H-likelihood construction

yij : the jth repeated response of i-th subject (i = 1, . . . , q, j = 1, . . . , ni )

Ti : a single event time of i-th subject

Ci : the corresponding censoring time

We observe t∗i = min(Ti ,Ci ) and δi = I(Ti ≤ Ci ).

Linear Mixed Model for y :

yij = xᵀ1ijβ1 + vi + εij

where vi ∼ N(0, α) and ε ∼ N(0, φ) are independent.

Frailty Model for T :

λi (t|vi ) = λ0(t) exp(xᵀ2iβ2 + γvi )

where λ0 is an unspecified baseline hazard function and γ is a real-valued association
parameter that allows the magnitude of the association to be different between two
outcomes, yij and Ti .
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H-likelihood construction

The h-likelihood becomes

h =
∑

i,j

`1ij +
∑

i

`2i +
∑

i

`3i

where

`1ij = `1ij (β1, φ; yij |vi )

=− 1
2 log(2πφ)− 1

2φ (yij − η1ij )2

`2i = `2i (β2, λ0; t∗i , δi |vi )

= δi (log λ0(t∗i ) + η2i )− Λ0(t∗i ) exp(η2i )

`3i = `3i (α; vi )r

=− 1
2 log(2πα)− 1

2αv 2
i

η1ij = xᵀ1ijβ1 + vi and η2i = xᵀ2iβ2 + vi are linear predictors.
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Iterative least squares equations

Following Breslow (1972), we define the baseline cumulative hazard function Λ0 to
be a step function with jumps λ0r = λ0(t(r)) at the observed event times t(r).

Λ0(t) =
∑

r :t(r)≤t

λ0r .

where t(r) is the r -th smallest distinect event time (r = 1, · · · ,D).

The second term
∑

i `2i of h becomes

∑
i

`2i =
∑

r

dr log λ0r +
∑

i

δiη2i −
∑

r

λ0r

{∑
i∈Rr

exp(η2i )

}

where dr is the number of events at t(r) and Rr = {i : t∗i ≥ t(r)} is the risk set at t(r).
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Iterative least squares equations

Following Ha et al. (2001), we use the profile h-likelihood h∗ :

h∗ = h|
λ0=λ̂0

=
∑

i,j

`1ij +
∑

i

`∗2i +
∑

i

`3i

where ∑
i

`∗2i =
∑

i

`2i |
λ0=λ̂0

=
∑

r

dr log λ̂0r +
∑

i

δiη2i −
∑

r

dr

λ̂0r = λ̂0r (β2, v) = dr∑
i∈Rr

exp(η2i )

are the solution of the estimating equations ∂h
∂λ0r

= 0 for r = 1, . . . ,D.

The penalized partial h-likelihood hp is given by

hp =
∑

i,j

`1ij +
∑

i

δiη2i −
∑

r

dr log

{∑
i∈Rr

exp(η2i )

}
+
∑

i

`3i
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Iterative least squares equations

The score equations for fixed and random effects (β1, β2, v) given dispersion
parameters ψ = (φ, α, γ)ᵀ are

∂hp

∂β1
= 1

φ
Xᵀ1 (y − µ1)

∂hp

∂β2
= Xᵀ2 (δ − µ̂2)

∂hp

∂v = 1
φ

Zᵀ1 (y − µ1) + γZᵀ2 (δ − µ̂2)− v
α

where µ1 = X1β1 + Z1v = η1, µ̂2 = exp
(

log Λ̂0(t∗) + η2

)
with η2 = X2β2 + γZ2v .

Z1 is n×q group indicator matrix, and Z2 = I1 which denotes a q×q identity matrix.

Λ̂0(t) =
∑

r :t(r)≤t λ̂0r is the estimator of cumulatize baseline hazard.
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Iterative least squares equations

This leads to the iterative least squares (ILS; see Ha et al. (2017)) joint equations
for θ = (βᵀ1 , β

ᵀ
2 , v

ᵀ)ᵀ, given byXᵀ1 W1X1 0 Xᵀ1 W1Z1

0 Xᵀ2 W2X2 Xᵀ2 (γW2)Z2

Zᵀ1 W1X1 Zᵀ2 (γW2)X2 ZᵀWZ + Q

∣∣∣∣∣∣
θ=θ(s)

θ(s+1) =

Xᵀ1 W1w1

Xᵀ2 w2

Zᵀw∗

∣∣∣∣∣∣
θ=θ(s)

where W1 = − ∂2hp
∂η1∂η

ᵀ
1

= 1
φ

In, W2 = − ∂2hp
∂η2∂η

ᵀ
2

, Q = − ∂2`3
∂v∂vᵀ = 1

α
Iq,

w1 = y , w2 = W2η2 + (δ − µ̂2), and

Z =
(

Z1

γZ2

)
, W =

(
W1 0
0 W2

)
, and w∗ =

(
W1w1

w2

)
Note here that ZᵀWZ = Zᵀ1 W1Z1 + Zᵀ2 (γ2W2)Z2 and Zᵀw∗ = Zᵀ1 W1w1 + γZᵀ2 w2.
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Fitting procedure

The fitting procedure consists of the following two steps.

(S1) Estimation of fixed and random effects θ = (βᵀ1 , β
ᵀ
2 , v

ᵀ)ᵀ via the ILS equations.

(S2) Estimation of dispersion parameters ψ = (φ, α, γ)ᵀ as follows.

Estimation of ψ

We used the adjusted profile h-likelihood, given by

pθ(hp) =
[
hp −

1
2 log det

{ 1
2πH(hp , θ)

}]∣∣∣
θ=θ̂

where θ̂ = θ̂(ψ) are solutions of ∂hp
∂θ

= 0 for given ψ, and

H(hp , ψ) = − ∂2hp

∂θ∂θᵀ

is observed information matrix for θ.
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Fitting procedure

The estimating equations of ψ are given by

∂pθ(hp)
∂ψ

= 0

leading to the estimating equations

φ̂ = (y − µ̂1)ᵀ(y − µ̂1)
n − κ0

and α̂ = v̂ᵀv̂
q − κ1

where κ0 = −φ tr
{

Ĥ−1 ∂Ĥ
∂φ

}
, κ1 = −α tr

{
Ĥ−1 ∂Ĥ

∂α

}
, and Ĥ = H(hp , θ)|

θ=θ̂(ψ).

The estimate of γ is also easily implemented via the Newton-Raphson method using
the first and second derivatives.

This approach can extended to a joint model with competing-risk data (Ha et al.,
2017).
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Chapter 10. Further Topics: Variable Selection
Penalized least-square methods

Many classical subset selection methods, such as forward/backward selection or
best-subset selection, cannot be easily adapted to applications where the number of
variables is much greater than the sample size.

PLS methods is another way to perform variable selection. The general version of
the PLS is the penalized likelihood criterion:

Qλ(β) = `(β)− pλ(β),

where `(β) =
∑n

i=1 log fφ(yi |β) is log-likelihood and pλ(β) is penalty function.

We can in general put variable selection of any GLM-based regression model in this
framework.
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Penalized least-square methods

Consider the regression model

yi = xᵀi β + ei , i = 1, · · · , n (1)

where β is a p × 1 vector of fixed unknown parameters and ei ’s are i.i.d. with (0, φ).

Variable selection procedure can be described as PLS estimation that minimizes

Qλ(β) = 1
2

n∑
i=1

(yi − xᵀi β)2 +
d∑

j=1

pλ(|βj |)

where pλ(·) is a penalty function controlling model complexity.
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Penalized least-square methods

With the L1-penalty, the PLS becomes LASSO:

Qλ(β) = 1
2

n∑
i=1

(yi − xᵀi β)2 + λ

p∑
j=1

|βj |,

which automatically sets to zero those predictors whit small estimated OLS
coefficients, thus performing simultaneous estimation and variable selection.

LASSO has been criticized on the ground that it typically selects too many variables
to prevent over-shrinkage of the regression coefficients (Radchenko and James,
2008); otherwise, regression coefficients of selected variables are often over-shrunken.

To improve LASSO, various other penalties have been proposed: SCAD penalty for
oracle estimators (Fan and Li, 2001), adaptive LASSO (Zou, 2006), elastic net (Zou
and Hastie, 2005).
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Penalized least-square methods

With the L2-penalty, the PLS becomes ridge regression:

Qλ(β) = 1
2

n∑
i=1

(yi − xᵀi β)2 + λ

p∑
j=1

|βj |2.

In this case, all variables are kept in the model but the resulting estimates are the
shrunken versions of the OLS estimates.

Ridge regression often ahcieves good prediction performance, but it cannot produce
a parsimonious model.

The ridge estimator is the same as random-effect estimator where βj are i.i.d.
normal random effects.
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Random effect variable selection

We describe a random effect model that generates a family of penalties, including
the normal type, LASSO type and a new unbounded penalty at the origin.

In regression model (1), suppose β are random effects; conditional on uj , we have

βj |uj ∼ N(0, ujθ), (2)

where θ is a fixed dispersion parameter and uj ’s are i.i.d. random variables.

In this random effect model, sparseness or selection is achieved in a transparent way,
since uj ≈ 0 implies βj ≈ 0.

Since θuj = (aθ)(uj/a) for any a > 0, θ and uj are not separately identifiable. Thus,
we constrain E(uj ) = 1 as in HGLMs, which imposes a constraint on random effect
estimates such that

∑p
j=1 ûj/p = 1.
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Random effect variable selection

Assume that uj ’s are from the gamma distribution with a parameter w such that

fw (uj ) = (1/w)1/w 1
Γ(1/w) u1/w−1

j e−uj/w ,

having E(uj ) = 1 and Var(uj ) = w .

Model (2) can be re-written as βj = √τjej with ej ∼ N(0, 1) and

log τj = log θ + vj

where vj ≡ log uj , which defines a DHGLM together with model (1).
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Random effect variable selection

Then h-loglihood h = h1 + h2 is given by

h1 =
n∑

i=1

log fφ(yi |β) = −n
2 log(2πφ)− 1

2φ

n∑
i=1

(yi − xᵀi β)2,

h2 =
p∑

j=1

{log fθ(βj |uj ) + log fw (vj )},

log fθ(βj |uj ) = −1
2{log(2πθ) + log uj + β2

j /(θuj )},

log fw (vj ) = − log(w)/w − log Γ(1/w) + vj/w − exp(vj )/w .
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Random effect variable selection

The outline of the estimation scheme using IWLS as follows:

For given (β,w , φ, θ) solving ∂h/∂u = 0 gives the random effect estimator

ûj ≡ ûj (β) = 1
4{8wβ2

j /θ + (2− w)2}1/2 + (2− w)]. (3)

For given û, Lee and Oh (2014) proposed to update β based on the model (1) with
β satisfying (2). This is a purely random effect model

Y = Xβ + e

where e ∼ N(0,Σ ≡ diag{φ}) and β ∼ N(0,D ≡ diag{ûjθ}).

From the mixed model equation, we update β by solving

(XᵀX + Wλ)β = Xᵀy (4)

where Wλ ≡ diag{λ/ûj} and λ = φ/θ.
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Random effect variable selection

It is clear that β̂j = 0 when ûj = 0. If we allow threshold by setting small ûj to zero,
then the corresponding weight 1/ûj in Wλ is undefined.

We could exclude the corresponding predictors from (4), but instead we employ a
perturbed random effect estimate ûδ,k = λ(|βk |+ δ)/|p′λ(|βk |)| for a small positive
δ = 10−8.Then the weight is always defined and the solution is nearly identical to
the original IWLS as long as δ is small.

In random effect models, we used ML or REML estimates for (w , φ, θ) and
computed tuning paramter λ as the ratio φ/θ. On the other hand, in variable
selection, it is common to estimate λ by using K-fold cross validation since λ is not
a model parameter in PLS procedure.
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Implied penalty functions

Given (w , φ, θ), the estimator of β is obtained by maximizing the profile h-loglihood

hp = (h1 + h2)|u=û,

where û solves dh/du = 0.

Since h1 is the classical loglihood, the procedure corresponds to a penalized
loglihood with implied penalty

pλ(β) = −φh2|u=û,

where ûj is computed in the first step of the IWLS.

Specifically, for fixed w , taking only terms that involve βj and ûj , the j-th term of
the penalty function is

pλ(βj ) = φ

2θ
β2

j

ûj
+ φ(w − 2)

2w log ûj + φ

w ûj . (5)
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Implied penalty functions

Thus the random effect model leads to a family of potentially unbounded penalty
functions pλ(β) indexed by w :
(1) w → 0: ridge penalty (∵ ûj → 1 if w → 0)
(2) w = 2: LASSO penalty (∵ ûj = |βj |/

√
θ)

(3) w > 2: penalty with infinite value and derivative at 0

As the concavity near the origin increases, the sparsity of local solutions increases,
and as the slope becomes flat, the amount of shrinkage lessens.

From the next figure, we can see that HL controls the sparsity and shrinkage
amount by choosing the values of w and λ simultaneously.
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Implied penalty functions
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Implied penalty functions

By controlling the amount of sparsity and shrinkage simultaneously, the HL has
much higher chances of selecting the correct models without losing prediction
accuracy than the other methods (Kwon et al., 2017).

Ng et al. (2006) showed the consistency of all local solutions of the HL method,
which implies the uniqueness of HL solution under certain conditions

Ng et al. (2017) showed that HL estimator achieves consistent estimation of number
of change points, their locations, and their sizes, while LASSO and SCAD may not.

Advantage of the HL method is to achieve asymptotic selection consistency without
losing prediction accuracy in finite sample.
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Scalar β case

Consider the simplest case that β is the population mean and z is the sample mean.
Here we can illustrate various variable selection procedures.

The IWLS step (4) gives
β̂ = z

1 + λ/û , (6)

and the corresponding PLS criterion is

Qλ(β) = 1
2 (z − β)2 + pλ(β). (7)

The next figure shows the penalized likelihood surfaces at different values of z.
Given λ as z approaches zero (when z ≤ 2), there is only one maximum at zero, so
in this case the estimate is zero and the corresponding predictor is not selected.
Otherwise, bimodality occurs.
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Scalar β case
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Scalar β case

Note that the implied penalized likelihood Qλ(β) is not convex but the model can
be expressed hierarchically as (a) yi |β is normal and (b) βj |uj is normal with (c)
gamma uj ; all three models are convex.

Thus the IWLS algorithm overcomes the difficulties of a non-convex optimization by
solving three interlinked convex optimizations.

Equalizing the score equations for β from (5) and from the PLS (6), we have

β(1 + λ/û)− z = ∂Qλ/∂β = −(z − β) + p′λ(β),

and get a useful general formula

û(β) = λβ/p′λ(β), (8)

which allows us to obtain results for LASSO, SCAD or the so called adaptive LASSO
by using different random effect estimates û in the IWLS of (5).
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Scalar β case

Examples of the penalty derivatives for some methods are given in the next table.

Types p′λ(β)
LASSO λ sign(β)
SCAD λ sign(β)

{
I(|β| < λ) + (aλ−|β|)+

(a−1)λ I(|β| > λ)
}

HL λβ/{w{(2/w − 1) + κj}/4}
where κj = {8β2/(wθ) + (2/w − 1)2}1/2

Table. Derivative of penalty functions for some methods

For the LASSO, pλ(β) = λ|β|, so û = |β|.

For the adaptive LASSO, pλ(β) = 2λ|β|/|z|, so û = |β||z|/2.

For the SCAD, û = |β|/{I(|β| ≤ λ) + (aλ−|β|)+
(a−1)λ I(|β| > λ)} for some a > 2.
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Scalar β case

540 / 569



Structured variable selection

In regression problems, explanatory variables often possess a natural group structure.
categorical factors are often represented by a group of indicator variables
to capture flexible functional shapes, continuous factors can be represented by a linear
combination of basis functions such as splines or polynomials.

In these situations, the problem of selecting relevant variables involves selecting
groups rather than selecting individuals.
Depending on the situation, the individual variables in a group may or may not be
meaningful scientifically

If they are not, we are typically not interested in selecting individual variables and the
interest is limited to group selection.
However, if the individual variables are meaningful, then we would be interested in
selecting individual variables within each selected group; we refer to this as bi-level
selection. (Huang et al., 2012)
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Structured variable selection

Suppose that the explanatory variables can be divided into K groups and the
outcome y = (y1, · · · , yn)ᵀ has mean µ = (µ1, · · · , µn)ᵀ that follows a GLM with
link function ηi ≡ h(µi ), such that we have a linear predictor η = (η1, · · · , ηn)ᵀ,

η = Xβ ≡ X1β1 + · · ·+ XKβK (9)

where X ≡ (X1, · · · ,XK ) and β = (β1, · · · , βK )ᵀ are collection of n × pk design
matrices and pk regression coefficients, respectively.
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Structured variable selection

For group selection, Lee et al. (2015) considered a random effect model

βkj |uk ∼ N(0, ukθ), k = 1, · · · ,K and j = 1, · · · , pk (10)

uk ∼ gamma(wk ), k = 1, · · · ,K (11)

where θ and wk are regularization parameters that control the degree of shrinkage
and sparseness of the estimates.

For a given θ, the sparsity among the groups increases as wk ’s get larger, while for
fixed wk ’s the shrinkage becomes smaller as θ increases.
Group selection is achieved as follows.

If ûk = 0, then β̂kj = 0 for all j.
If ûk > 0, then β̂kj , 0 for all j.

This means that the model is limited to group-only selection, as it does not impose
sparsity within the selected groups.
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Structured variable selection

Bi-level selection can be done by extending the model (10) as follows:

βkj |uk , vkj ∼ N(0, ukvkjθ), k = 1, · · · ,K and j = 1, · · · , pk (12)

uk ∼ gamma(wk ) (13)

vkj ∼ gamma(τ). (14)

where uk is the random effect corresponding to the k–th group and vkj is the
random effect corresponding to the j–th variable in the k–th group.
Hence this model selects variables at both the group level and the individual variable
level within selected groups.

If ûk = 0, then β̂kj = 0 for all j = 1, . . . , pk .
If ûk > 0, then β̂kj = 0 when v̂kj = 0.
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Interaction and hierarchy constraints

Interaction terms in regression models form a natural hierarchy with the main
effects, so their selection requires special consideration.

It is common practice that the presence of an interaction term requires both of the
corresponding main effects in the model. This may be called a strong hierarchy
constraint, while the weak version requires only one of the main effects to be present.

We can use a random effect model to impose sparse selection of interaction terms
under the hierarchy constraints.
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Interaction and hierarchy constraints

Consider a p-predictor GLM with both main and interaction terms.

ηi = β0 +
p∑

j=1

xijβj +
∑
j<k

xijxikδjk , i = 1, . . . , n,

which we write in matrix form as

η = Xβ + Zδ,

where η = (η1, . . . , ηn) is the vector of linear predictors, β = (β1, . . . , βp) and
δ = (δ12, . . . , δp−1,p) are the vectors of the corresponding regression coefficients for
main and interaction terms, respectively. Similarly, X is the design matrix of the
intercept and linear terms for the main effects, and Z is that of the cross product
terms for the interactions.
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Interaction and hierarchy constraints

Lee et al. (2015) proposed the use of random effect model.

Under the strong hierarchy constraint,

βj |uj ∼ N(0, ujθ),

δkj |uk , uj , vkj ∼ N(0, ukujvkjθ) for k > j

uj ∼ gamma(w1) and vkj ∼ gamma(w2).

Under the weak hierarchy constraint,

βj |uj ∼ N(0, ujθ),

δkj |uk , uj , vkj ∼ N(0, (uk + uj )vkjθ)

uj ∼ gamma(w1) and vkj ∼ gamma(w2).
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Interaction and hierarchy constraints
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Functional marginality and general graph structure

For completeness, we describe here other statistical models in which the notion of
hierarchy applies, and show how to model them using the random effects approach.

Suppose we want to fit the second-order mixed polynomial model

η = X1β1 + · · ·+ Xpβp + X 2
1 δ11 + X1X2δ12 · · ·+ X 2

p δpp , (15)

where XkXj denotes the component-wise product between the two column vectors.

To maintain the functional marginality rule, we consider a random effect model

βj |uj ∼ N(0, ujθ),

δjj |uj , vjj ∼ N(0, ujvjjθ),

δkj |uk , uj , vkj ∼ N(0, ukujvkjθ),

uj ∼ gamma(w1) and vkj ∼ gamma(w2).

This is analogous to the strong hierarchy in previous model, but now we include δjj .

It can be easily extended to general higher-order models.
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Functional marginality and general graph structure

Various hierarchical structures can be represented by a directed graph.
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Functional marginality and general graph structure

In Figure 10.3 (a) for strong hierarchy, X5 can be included if (X1,X2,X3) are included
in the model. This graph can be modeled by the following random effect model:

β1|u1 ∼ N(0, u1θ),

β2|u1, u2 ∼ N(0, u1u2θ),

β3|u1, u3 ∼ N(0, u1u3θ),

β4|u1, u2, u4 ∼ N(0, u1u2u4θ),

β5|u1, u2, u3, u5 ∼ N(0, u1u2u3u5θ),

uj ∼ gamma(w) for j = 1, . . . , 5.

For weak hierarchy, X5 can be included if the model includes, besides X1, at least
one of X2 and X3. This graph can be modeled by

β5|u1, u2, u3, u5 ∼ N(0, u1(u2 + u3)u5θ).
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Functional marginality and general graph structure

This illustrates how the random effect model can be adapted to describe various
hierarchical structures in the covariates.

The HL method can easily applied to produce sparse versions of classical
multivariate techniques, such as the principle component analysis, canonical
covariance analysis, partial-least squares for Gaussian and that for survival outcomes
(Lee et al., 2010, 2011a,b, 2013).

Furthermore, it is straight forwards to apply HL method to various class of HGLM
models via penalized h-loglikelihood; general frailty models (Ha et al., 2014a) and
competing risks models (Ha et al., 2014b)
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ex. Diabetes

Disease progression of diabetes in Efron(2004)
442 diabetes patients
10 predictive variables: age, sex, bmi, bp and 6 types of serum measurements
Response variable: a measure of disease progression

Consider a quadratic model having p = 64 predictive variables
10 original terms
9 quadratic terms (except for binary variable)
10C9 = 45 interaction terms

We compare three methods: LASSO, SCAD and HL (w = 30).

Method LASSO SCAD HL
Number of variables 15 12 14
CV error 2988.69 2982.85 2891.76
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ex. Diabetes

LASSO SCAD HL
sex -5.43 -11.07 -10.86
bmi 23.89 25.14 23.63
map 12.04 15.16 15.17
hdl -9.00 -12.98 -12.52
ltg 22.28 23.49 22.89
glu 0.89 2.93
age
age2 0.35 0.95 2.76
bmi2 1.29 0.06 2.13
glu2 2.25 2.31 3.51
age:sex 5.26 7.33 7.46
age:map 1.53 0.68 1.69
age:ltg 0.43 0.01 1.55
age:glu 0.58
sex:map 0.03 2.29
bmi:map 3.87 5.23 5.13
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ex. Diabetes

The numbers of variables selected by the three methods are similar, varying from 10
to 15, though the HL method has the smallest cross-validated error (Kwon et al.,
2016).

If we look at estimates of main effects, the LASSO estimators are shrunk the most
and the SCAD estimators the least.

We see that all methods include the age:sex interaction in their final model,
consistent with the known result that diabetes progression behaves differently in
women after menopause

As seen in Table 10.2, with an automatic variable selection method with large p, the
marginality rule will be easily violated. A systematic way of handling such a problem
is grouped model selection as we shall show.
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ex. Gene-gene interaction

As an illustration, we analyse gene-gene interaction in a cohort study called ULSAM
(Uppsala Longitudinal Study of Adult Men).

Ongoing population-based study of all available men born between 1920 to 1924 in
Uppsala County, Sweden.

Analyse a subset of n = 1179 subjects for which we have genetic data.

The primary outcome is body-mass index (BMI), a major risk factor for many
cardiovascular diseases.

Based on several criteria, we selected 10 single-nucleotide polymorphisms (SNPs) as
the predictive variables. (Lee et al., 2015)
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ex. Gene-gene interaction
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ex. Gene-gene interaction

The ordinary least squares (iOLS) method estimates all the interaction terms and
connot recognize the linkage disequillibrium between SNPs 1, 2 and 5.

The largest interactions in iOLS are (1,6), (1,7), (5,7). In contrast, all the sparse
methods select (1,4) and (3,6) as the most interesting pairs.

As expected, unconstrained methods (iLASSO and iHL) select interaction term
without main effects, which can lead to misleading conclusions.

The hierarchy constrained method (wHL and sHL) have comparable sparsity and
they both select only one of the linked SNPs 1, 2 and 5. If strong hierarchy is
desired, sHL method provideds a sensibly sparse solution in this case.
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Chapter 11. Further Topics : Multiple Testing
Single hypothesis testing

Single hypothesis testing problem on the mean of Y ∼ N(µ, 1).

H0 : µ = µ0 vs. H1 : µ = µ1

The classical Neyman-Pearson likelihood ratio is

L = f (y |H1)
f (y |H0)

Let a discrete random effect be o = 0 if H0 is true and o = 1 if H1 is true. Then the
h-likelihood is

f (y , o) = f (y |o)P(o)

Hence, the h-likelihood ratio is

R = f (y , o = 1)
f (y , o = 0) = f (y |H1)P(o = 1)

f (y |H0)P(o = 0) = 1− p0

p0
L
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Single hypothesis testing

For the test depending on the value of L, p0 should be strictly between 0 and 1.
However, in single hypothesis testing, p0 is not estimable.

Both L and R give equivalent optimal tests, but the h-likelihood ratio R opens up a
way for testing multiple hypotheses.

The h-likelihood ratio can also be interpreted as a ratio of predictive probabilities.

R = f (y , o = 1)
f (y , o = 0) = P(o = 1|y)f (y)

P(o = 0|y)f (y) = P(o = 1|y)
P(o = 0|y)

We can show that the optimal test is determined by the ratio of predictive
probabilities R, equivalent to the h-likelihood ratio.
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Single hypothesis testing

With the loss function that depends on λ,

o(1− δ) + λ(1− o)δ

we have the risk

E(o(1− δ) + λ(1− o)δ|y) = P(o = 1|y) + P(o = 0|y)(λ− R)δ

The optimal test δλ is determined by the h-likelihood ratio,

δλ = I(R > λ)

In the single hypothesis testing, p0 may not estimable, (R = 1−p0
p0

L may not be
calculated), so that need to define the optimal test without p0.

Define the optimal test as δλ
∗

= I(L > λ∗)(= I(R > λ)) where λ∗ = λp0
1−p0

, for some
0 < p0 < 1. And choose λ∗ to satisfy P(δλ

∗
= 1|H0) ≤ α.
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Multiple testing

Most literature on multiple testing has focused on the error control, not the power
of the test.

The h-likelihood gives the optimal test maximizing the power of the test.

Suppose that we have N null hypotheses H1, ...,HN to test simultaneously.
δ = 0 δ = 1 Total

o = 0 V00 V01(Type 1 error) N0

o = 1 V10 (Type 2 error) V11 N1

Total M0 M1 N

There are methods choosing the threshold of test.
- control the family wise error rate(FWER)
- control false discovery rate(FDR)
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Multiple testing

Family wise error rate
The probability of at least one false positive.

FWER = P(V01 ≥ 1)

False discovery rate
The expected proportion of errors among rejected hypotheses.

FDR = E
(V01

M1

)
Following Efron (2004), we use the marginal FDR

mFDR = E(V01)
E(M1)
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Multiple testing

Similar to single case, with the loss∑
oi (1− δi ) + λ(1− oi )δi

the optimal rule δλ = {δλ1 , ..., δλN} becomes

δλi = I(Ri > λ)

In multiple testing case, po = E(N0)
N is estimable, so that Ri can be directly used.

With the optimal rule δλ, the marginal false discovery rate is given by

mFDR(λ) = E(V01)
E(M1) =

∑
P(oi = 0, δλi = 1)

E(
∑

δλi )

And the estimated mFDR is given by

̂mFDR(λ) =
p̂0
∑

P(Ri > λ|H0i )∑
I(Ri > λ)
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Multiple testing

mFDR(λ) can be controlled by ̂mFDR(λ) at a specific level by varying λ.

Parameters can be estimated by maximizing marginal likelihood. And if the MLE for
θ is consistent, the likelihood ratio test is asymptotically optimal.

Random effect model for multiple testing Suppose that yij1 for the ith site of the
jth individual in the control group and yij2 in the treatment group can be modeled
for i = 1, 2, ...,N as

yij1 = ξi + εij1

yij2 = ξi + wi + εij2

where ξi is the site effect, wi is the random treatment effect and εijm is the error
with E(εijm) = 0 and Var(εijm) = φim.
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Multiple testing

Assume that the random treatment effect wi s are independent with

E(wi |H0i ) = 0 and Var(wi |H0i ) = σ2

E(wi |H1i ) = µ , 0 and Var(wi |H1i ) = τ 2

Then, for the difference in means di = ȳi2 − ȳi1, we have the following hierarchical
model:

Conditional on wi and oi ,E(di |wi , oi ) = wi

and Var(di |wi , oi ) = ψi

Conditional on oi = 0,E(wi |H0i ) = 0 and Var(wi |H0i ) = σ2

Conditional on oi = 1,E(wi |H1i ) = µ and Var(wi |H1i ) = τ 2

where ψi = φi1/n1 + φi2/n2.
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Multiple testing

Let v = (w , o) be unobservables, and y be the set of all observations. The
h-likelihood is defined to be

L(v , θ; y , v) = fθ(y , v) = fθ(y)Pθ(v |y)

Suppose that we are not interested in effect size wi , we can integrate them out. It
leads the model for d = (d1, ..., dN )

Given oi = 0,E(di |H0i ) = 0 and Var(di |H0i ) = ψi + σ2

Given oi = 1,E(di |H1i ) = µ and Var(di |H1i ) = ψi + τ 2
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Multiple testing

Then the h-likelihood is given by

L(o, θ; d , o) = fθ(d , o) =
N∏

i=1

L(oi )

where

L(oi = 1) = P(oi = 1)fθ(di |oi = 1) = (1− p0)fθ(di |H1i )

L(oi = 0) = P(oi = 0)fθ(di |oi = 0) = p0fθ(di |H0i )
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ex. Neuroimaging data

PET data from the study of the Korean standard template.

The data consists of scans of 28 healthy males and 22 healthy females.

Each image has N = 189, 201 voxels.

Previous methods have not identified any voxel in the brain to be significant and Lee
and Lee (2017) identified some significant voxels. So the method based on
h-likelihood ratio test is the most powerful one.
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